精英家教网 > 高中数学 > 题目详情
13.如图,这是一个半圆柱与多面体ABB1A1C构成的几何体,平面ABC与半圆柱的下底面共面,且AC⊥BC,P为$\widehat{{A}_{1}{B}_{1}}$上的动点.
(1)证明:PA1⊥平面PBB1
(2)设半圆柱和多面体ABB1A1C的体积分别为V1,V2,且AC=BC,求V1:V2

分析 (1)利用线面垂直的判定定理,即可证明结论;
(2)利用体积公式,求出半圆柱和多面体ABB1A1C的体积,即可求V1:V2

解答 (1)证明:在半圆柱中,BB1⊥平面PA1B1,所以BB1⊥PA1
因为A1B1是底面圆的直径,所以PA1⊥PB1,因为PB1∩BB1=B1,PB1?平面PBB1
BB1?平面PBB1,所以PA1⊥平面PBB1.(6分)
(2)解:因为AC⊥BC,AC=BC,所以△ABC是等腰直角三角形,且AB2=BC2+AC2=2AC2
所以半圆柱的体积V1=$\frac{1}{2}$($\frac{1}{2}$AB)2π•AA1=$\frac{π}{4}$AC2•AA1
多面体ABB1A1C是以矩形ABB1A1为底面,以C为顶点的四棱锥,其高为点C到底面ABB1A1的距离,设这个高为h,在Rt△ABC中,AB•h=AC•BC,所以h=$\frac{AC•BC}{AB}$,
所以V2=$\frac{1}{3}$•AA1•AB•$\frac{AC•BC}{AB}$=$\frac{1}{3}$•AA1•AC•BC=$\frac{1}{3}$AA1•AC2
所以$\frac{{V}_{1}}{{V}_{2}}$=$\frac{3π}{4}$.(14分)

点评 本题考查线面垂直的判定,考查体积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,圆O内切于△ABC的边于点D,E,F,AB=AC,连结AD交圆O于点H,直线HF交BC的延长线于点G.
(1)证明:圆心O在直线AD上;
(2)若BC=6,求GC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,△ABC为正三角形,EC⊥平面ABC,BD∥CE且CE=CA=2BD,M是EA的中点.
(Ⅰ)证明:DM∥平面ABC;
(Ⅱ)若正三角形ABC的边长是a,求三棱锥D-ECA的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD的底面为直角梯形,且∠BAD=∠ADC=90°,E,F,G分别为PA,PB,PC的中点,直线PB⊥平面EFG,AB=$\frac{1}{3}$DC=$\frac{1}{3}AD$=1.
(1)若点M∈平面EFG,且与点E不重合,判断直线EM与平面ABCD的关系,并说明理由;
(2)若PB=4,求四棱锥C-ABFE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.用解析法证明:等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在圆O中,AB,CD是互相平行的两条弦,直线AE与圆O相切于点A,且与CD的延长线交于点E,求证:AD2=AB•ED.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,三棱柱ABC-A1B1C1中,侧棱AA1⊥平面ABC,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,E,F分别是CC1,BC的中点.
(Ⅰ)求证:B1F⊥平面AEF;
(Ⅱ)求锐二面角B1-AE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若△ABC的内角A,B,C所对的边分别为a,b,c,且满足asinB-$\sqrt{3}$bcosA=0
(1)求A;
(2)当a=$\sqrt{7}$,b=2时,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知关于x的方程:x2+2(a-1)x+2a+6=0.
(Ⅰ)若该方程有两个不等实数根,求实数a的取值范围;
(Ⅱ)若该方程有两个不等实数根,且这两个根都大于1,求实数a的取值范围;
(Ⅲ)设函数f(x)=x2+2(a-1)x+2a+6,x∈[-1,1],记此函数的最大值为M(a),最小值为N(a),求M(a),N(a)的解析式.

查看答案和解析>>

同步练习册答案