精英家教网 > 高中数学 > 题目详情
已知某几何体的三视图,根据图中标出的尺寸,可得这个几何体的体积是(  )
A、
1
12
B、
1
4
C、
1
6
D、
1
3
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:由已知中的三视图可得,该几何体是一个以俯视图为底面的三棱锥,分别求出棱锥的底面面积和高,代入棱锥体积公式,可得答案.
解答: 解:由已知中的三视图可得,该几何体是一个以俯视图为底面的三棱锥,
棱锥的底面面积S=
1
2
×1×1=
1
2

高h=1,
故棱锥的体积V=
1
3
Sh
=
1
6

故选:C
点评:本题考查了由三视图求几何体的表面积和体积,根据三视图判断几何体的形状及数据所对应的几何量是解答此类问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
-1,0<x<1
1-
1
x
,x≥1

(1)判断函数f(x)在区间(0,1)和[1,+∞)上的单调性(不必证明);
(2)当0<a<b,且f(a)=f(b)时,求
1
a
+
1
b
的值;
(3)若存在实数a,b(1<a<b)使得x∈[a,b]时,f(x)的取值范围是[ma,mb](m≠0),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线x2=2py(p>0)过焦点F的直线l交抛物线于A、B两点,O为原点,若△AOB面积最小值为8.
(1)求P值
(2)过A点作抛物线的切线交y轴于N,
FM
=
FA
+
FN
,则点M在一定直线上,试证明之.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①分别和两条异面直线均相交的两条直线一定是异面直线
②一个平面内任意一点到另一个平面的距离均相等,那么这平面平行
③三棱锥的四个面可以都是直角三角形
④过两异面直线外一点能作且只能作出一条直线和这两条异面直线同时相交
⑤已知平面α,直线a和直线b,且a∩α=a,b⊥a,则b⊥α
其中正确命题的序号是
 
(请填上所有你认为正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为奇函数,且在(-∞,0)内是增函数,又f(-2)=0,则f(x)<0的解集为(  )
A、(-2,0)∪(0,2)
B、(-∞,-2)∪(0,2)
C、(-∞,-2)∪(2,+∞)
D、(-2,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是不锈钢保温饭盒的三视图,根据图中数据(单位:cm),则该饭盒的表面积为(  )
A、1100πcm2
B、900πcm2
C、800πcm2
D、600πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知某个几何体的三视图如图,则该几何体的体积为(  )
A、π+4
B、
π+4
3
C、
2π+4
3
D、π+
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足xy=4,则x2+4y2的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若M为圆C:x2+y2+6x-4y+12=0上的动点,抛物线E:y2=4x的准线为l,点P是抛物线E上的任意一点,记点P到l的距离为d,则d+|PM|的最小值为
 

查看答案和解析>>

同步练习册答案