精英家教网 > 高中数学 > 题目详情

【题目】圆O:x2+y2=9上的动点P在x轴、y轴上的射影分别是P1,P2,点M满足

(1)求点M的轨迹C的方程;

(2)点A(0,1),B(0,﹣3),过点B的直线与轨迹C交于点S,N,且直线AS、AN的斜率kAS,kAN存在,求证:kASkAN为常数.

【答案】(1);(2)

【解析】

1)设,根据向量关系,用的坐标表示的坐标后,将的坐标

代入圆的方程可得的轨迹方程;(2)设出直线的方程并代入椭圆方程,利

用韦达定理以及斜率公式得为常数.

(1)设P(x0,y0),M(x,y),则=(x0,0),=(0,y0),

.得

代入x02+y02=9,所以点M的轨迹C的方程为.

(2)当SN的斜率不存在时,AS,AN的斜率也不存在,故不适合题意;

当SN的斜率存在时,设斜率为k,

则直线SN的方程为y=kx﹣3代入椭圆方程整理得(1+4k2)x2﹣24kx+32=0,△>0k2>2

设S(x1,y1),N(x2,y2),则x1+x2,x1x2

则kASkAN

故kASkAN为常数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“割圆术”是刘徽最突出的数学成就之一,他在《九章算术注》中提出割圆术,并作为计算圆的周长,面积已经圆周率的基础,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和3.1416这两个近似数值,这个结果是当时世界上圆周率计算的最精确数据.如图,当分割到圆内接正六边形时,某同学利用计算机随机模拟法向圆内随机投掷点,计算得出该点落在正六边形内的频率为0.8269,那么通过该实验计算出来的圆周率近似值为(参考数据:

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的对称轴上一点的直线与抛物线相交于MN两点,自MN向直线作垂线,垂足分别为

)当时,求证:

)记的面积分别为,是否存在,使得对任意的,都有成立.若存在,求值;若不在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若存在正数,使恒成立,求实数的最大值;

(2)设,若没有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列1121241248124816其中第一项是,接下来的两项是,再接下来的三项是,依此类推那么该数列的前50项和为  

A. 1044 B. 1024 C. 1045 D. 1025

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

以平面直角坐标系xOy的原点为极点,x轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l的坐标方程为,曲线C的参数方程为(θ为参数).

(1)求直线l的直角坐标方程和曲线C的普通方程;

(2)以曲线C上的动点M为圆心、r为半径的圆恰与直线l相切,求r的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 .

1)若的充分不必要条件,求实数的取值范围;

(2)若为真命题,“”为假命题,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某企业有职工5000人,其中男职工3500人,女职工1500人.该企业为了丰富职工的业余生活,决定新建职工活动中心,为此,该企业工会采用分层抽样的方法,随机抽取了300名职工每周的平均运动时间(单位:h),汇总得到频率分布表(如表所示),并据此来估计该企业职工每周的运动时间:

平均运动时间

频数

频率

[02

15

0.05

[24

m

0.2

[46

45

0.15

[68

755

0.25

[810

90

0.3

[1012

p

n

合计

300

1

1)求抽取的女职工的人数;

2)①根据频率分布表,求出mnp的值,完成如图所示的频率分布直方图,并估计该企业职工每周的平均运动时间不低于4h的概率;

男职工

女职工

总计

平均运动时间低于4h

平均运动时间不低于4h

总计

②若在样本数据中,有60名女职工每周的平均运动时间不低于4h,请完成以下2×2列联表,并判断是否有95%以上的把握认为“该企业职工毎周的平均运动时间不低于4h与性别有关”.

附:K2=,其中n=a+b+c+d

PK2k0

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了解高一新生的体质健康状况,对学生的体质进行了测试. 现从男、女生中各随机抽取人,把他们的测试数据,按照《国家学生体质健康标准》整理如下表. 规定:数据≥,体质健康为合格.

等级

数据范围

男生人数

男生平均分

女生人数

女生平均分

优秀

良好

及格

不及格

以下

总计

--

(I)从样本中随机选取一名学生,求这名学生体质健康合格的概率;

(II)从男生样本和女生样本中各随机选取一人,求恰有一人的体质健康等级是优秀的概率;

(III)表中优秀、良好、及格、不及格四个等级的男生、女生平均分都接近(二者之差的绝对值不大于),但男生的总平均分却明显高于女生的总平均分.研究发现,若去掉四个等级中一个等级的数据,则男生、女生的总平均分也接近,请写出去掉的这个等级.(只需写出结论)

查看答案和解析>>

同步练习册答案