精英家教网 > 高中数学 > 题目详情
5.在三棱锥P-ABC中,PA⊥面ABC,∠ABC=90°,若AD⊥PB,垂足为D,AE⊥PC,垂足为E,求证:AD⊥PC.

分析 由已知条件先推导出BC⊥平面PAB,从而得到BC⊥AD,进而得到AD⊥平面PBC,由此能证明AD⊥PC.

解答 证明:∵在三棱锥P-ABC中,PA⊥面ABC,BC?平面ABC,
∴PA⊥BC,
∵∠ABC=90°,∴AB⊥BC,
∴BC⊥平面PAB,
又AD?平面PAB,∴BC⊥AD,
∵AD⊥PB,PB∩BC=B,∴AD⊥平面PBC,
∵PC?平面PBC,
∴AD⊥PC.

点评 本题考查异面直线垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在等腰直角△ABC中,∠A=90°,BC=6,△ABC中排列着内接正方形,如图所示,若正方形的面积依次为S1,S2,…,Sn,…(从大到小),其中n∈N+,则$\underset{lim}{n→∞}$(S1+S2+…+Sn)=$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{xn},{yn}满足$\underset{lim}{n→∞}$(2xn+yn)=1,$\underset{lim}{n→∞}$(xn-2yn)=1,求$\underset{lim}{n→∞}$(xnyn)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在平面直角坐标系中,O为原点,A(1,0),B(2,2),若点C满足$\overrightarrow{OC}$=t($\overrightarrow{OB}$-$\overrightarrow{OA}$),t∈R,则点C的轨迹方程为(  )
A.2x-y=0B.2x-y+2=0C.2x+y-2=0D.2x+y+2=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求函数y=$\sqrt{lo{g}_{2}(4x-3)}$的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设a,b,c∈(1,+∞),证明:2($\frac{lo{g}_{b}a}{a+b}$+$\frac{lo{g}_{c}b}{b+c}$+$\frac{lo{g}_{a}c}{c+a}$≥$\frac{9}{a+b+c}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆C:x2+(y-1)2=5,直线1过定点P(1,1).
(1)求圆心C到直线1距离最大时的直线1的方程;
(2)若1与圆C交与不同两点A、B,求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列说法错误的是(  )
A.多面体至少有四个面
B.九棱柱有9条侧棱,9个侧面,侧面为平行四边形
C.长方体、正方体都是棱柱
D.三棱柱的侧面为三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知图中阴影部分的面积为正整n,则二项式(x-$\frac{2}{\sqrt{x}}$)n 的展开式中的常数项为(  )
A.240B.一240C.60D.一60

查看答案和解析>>

同步练习册答案