【题目】给出下列命题,其中正确的命题有( )
A.设具有相关关系的两个变量x,y的相关系数为r,则越接近于0,x,y之间的线性相关程度越高
B.随机变量,若,则
C.公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有种
D.回归方程为中,变量y与x具有正的线性相关关系,变量x增加1个单位时,y平均增加0.85个单位
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程与曲线的直角坐标方程;
(2)若直线与曲线交于两点,且设定点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,边长为的正方形和高为的等腰梯形所在的平面互相垂直,,,与交于点,点为线段上任意一点.
(Ⅰ)求证:平面;
(Ⅱ)求与平面所成角的正弦值;
(Ⅲ)是否存在点使平面与平面垂直,若存在,求出的值,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的中心在坐标原点,其右焦点为,以坐标原点为圆心,椭圆短半轴长为半径的圆与直线相切.
(Ⅰ)求椭圆的方程;
(Ⅱ)经过点的直线,分别交椭圆于,及,四点,且,探究:是否存在常数,使得.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y(元)与生产该产品的数量x(千件)有关,经统计得到如下数据:
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
y | 112 | 61 | 44.5 | 35 | 30.5 | 28 | 25 | 24 |
根据以上数据,绘制了散点图.
参考数据:(其中)
183.4 | 0.34 | 0.115 | 1.53 | 360 | 22385.8 |
参考公式:对于一组数据,,其回归直线的斜率和截距的最小二乘估计分别为:.
(1)观察散点图判断,与哪一个适宜作为非原料成本y与生产该产品的数量x的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立y与x的回归方程.
(3)试预测生产该产品10000件时每件产品的非原料成本.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过 | 不超过 | |
第一种生产方式 | ||
第二种生产方式 |
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:,
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com