精英家教网 > 高中数学 > 题目详情
设数列{an}的各项都是正数,且对任意n∈N*,都有+…+,记Sn为数列{an}的前n项和.
(1)求数列{an}的通项公式;
(2)若bn=3n+(-1)n-1λ·2an(λ为非零常数,n∈N*),问是否存在整数λ,使得对任意n∈N*,都有bn+1>bn.
(1)ann(2)存在整数λ=-1
(1)在已知式中,当n=1时,,∵a1>0,∴a1=1,当n≥2时,+…+,①
+…+,②
①-②得,=(SnSn-1)(SnSn-1),
an>0,∴SnSn-1=2Snan,③
a1=1适合上式
n≥2时,=2Sn-1an-1,④
③-④得=2(SnSn-1)-anan-1=2ananan-1anan-1.
anan-1>0,∴anan-1=1,∴数列{an}是等差数列,首项为1,公差为1,可得ann.
(2)由(1)知:bn=3n+(-1)n-1λ·2n
bn+1bn=[3n+1+(-1)nλ·2n+1]-[3n+(-1)n-1λ·2n]=2·3n-3λ(-1)n-1·2n>0
∴(-1)n-1·λ<n-1,⑤
n=2k-1,k=1,2,3,…时,⑤式即为λ<2k-2,⑥
依题意,⑥式对k=1,2,3,…都成立,∴λ<1,
n=2kk=1,2,3,…时,⑤式即为λ>-2k-1,⑦
依题意,⑦式对k=1,2,3,…都成立,
λ>-,∴-<λ<1,又λ≠0,∴存在整数λ=-1,使得对任意n∈N*,都有bn+1>bn.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列的前项和为,数列满足:
(1)求数列的通项公式
(2)求数列的通项公式;(3)若,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知等比数列中,
(1)求数列的通项公式;
(2)若分别为等差数列的第3项和第5项,试求数列的通项公式及前项和

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设{an}是公比大于1的等比数列,Sn为数列{an}的前n项和.已知S3=7,且a1+3,3a2a3+4构成等差数列.
(1)求数列{an}的通项公式;
(2)令bn=ln a3n+1n=1,2,…,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面是关于公差d>0的等差数列{an}的四个命题:
p1:数列{an}是递增数列;p2:数列{nan}是递增数列;
p3:数列是递增数列;p4:数列{an+3nd}是递增数列.
其中的真命题为(  ).
A.p1p2B.p3p4
C.p2p3D.p1p4

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列满足:当)时,是数列 的前项和,定义集合的整数倍,,且表示集合中元素的个数,则            

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在等差数列{an}中,a1=3,a4=2,则a4a7+…+a3n+1等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知Sn是数列{an}的前n项和,且anSn-1+2(n≥2),a1=2.
(1)求数列{an}的通项公式.
(2)设bnTnbn+1bn+2+…+b2n,是否存在最大的正整数k,使得
对于任意的正整数n,有Tn恒成立?若存在,求出k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在等差数列中,已知,则该数列前11项的和等于
A.58B.88C.143D.176

查看答案和解析>>

同步练习册答案