精英家教网 > 高中数学 > 题目详情
16.若函数f(x)=sin3xcosx+cos3xsinx+$\sqrt{3}$sin2x.
(1)求函数f(x)的对称轴方程;
(2)求单调减区间;
(3)当x∈[0,$\frac{π}{2}$]时 求函数f(x)值域.

分析 (1)由三角函数中的恒等变换应用化简函数解析式可得f(x)=sin(2x-$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,由2x-$\frac{π}{3}$=kπ$+\frac{π}{2}$,k∈Z,可解得函数f(x)的对称轴方程.
(2)2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,可解得函数f(x)的单调减区间.
(3)由x∈[0,$\frac{π}{2}$],可得2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],利用正弦函数的性质可得函数f(x)值域.

解答 解:(1)∵f(x)=sin3xcosx+cos3xsinx+$\sqrt{3}$sin2x.
=sinxcosx+$\sqrt{3}$sin2x.
=$\frac{1}{2}$sin2x+$\frac{\sqrt{3}}{2}$-$\frac{\sqrt{3}}{2}$cos2x
=sin(2x-$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$,
∴由2x-$\frac{π}{3}$=kπ$+\frac{π}{2}$,k∈Z,可解得函数f(x)的对称轴方程:x=$\frac{kπ}{2}+\frac{5π}{12}$,k∈Z.
(2)2kπ+$\frac{π}{2}$≤2x-$\frac{π}{3}$≤2kπ+$\frac{3π}{2}$,k∈Z,可解得函数f(x)的单调减区间为:[kπ+$\frac{5π}{12}$,k$π+\frac{11π}{12}$],k∈Z.
(3)∵x∈[0,$\frac{π}{2}$],
∴2x-$\frac{π}{3}$∈[-$\frac{π}{3}$,$\frac{2π}{3}$],
∴sin(2x-$\frac{π}{3}$)∈[-$\frac{\sqrt{3}}{2}$,1],
∴函数f(x)=sin(2x-$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$值域为:[0,1+$\frac{\sqrt{3}}{2}$].

点评 本题主要考查了三角函数中的恒等变换应用,正弦函数的图象和性质,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知sinθ=-$\frac{1}{3}$,θ∈(-$\frac{π}{2}$,$\frac{π}{2}$),则sin(θ-5π)•sin($\frac{3π}{2}$-θ)的值是-$\frac{2\sqrt{2}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,几何体ABC-A1B1C1中,平面ABC∥平面A1B1C1,平面ACC1A1为矩形,平面ACC1A1⊥平面BCC1B1,已知AC=3,BC=AA1=4,BB1=5,B1C1=1
(Ⅰ)若平面AA1B∩平面BCC1B1=l,求证:l∥CC1
(Ⅱ)求钝二面角A-A1B-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l:$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α为l的倾斜角,且0<α<π)与曲线C:$\left\{\begin{array}{l}{x=\sqrt{2}cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数)相交于A、B两点,点F的坐标为(1,0).
(1)求△ABF的周长;
(2)若点E(-1,0)恰为线段AB的三等分点,求△ABF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+y2=1(a>1)的右焦点为F(1,0),过点F且不与坐标轴垂直的直线x=my+1交椭圆C于A,B两点,线段AB的垂直平分线与x轴交于点G(t,0).
(Ⅰ)当t=0时,求实数m的值;
(Ⅱ)求证:对于任意的实数m,都不存在直线AB,使得AG⊥BG.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知曲线C1:x2+y2=1经过伸缩变换$\left\{\begin{array}{l}{x′=2x}\\{y′=3y}\end{array}\right.$后得到曲线C2
(1)求曲线C2的方程;
(2)求曲线C2上所有点(x′,y′)中(x′-2)(y′-3)的最大值和最小值及对应的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x2-($\frac{a+1}{a}$)x+1,a>0
(1)当a=$\frac{1}{2}$时,解不等式f(x)≤0;
(2)比较a与$\frac{1}{a}$的大小;
(3)解关于x的不等式f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在如图所示的边长为2的正方形中随机掷一粒豆子,豆子落在正方形内切圆的上半圆(图中阴影部分)中的概率是(  )
A.$\frac{π}{4}$B.$\frac{π}{8}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.化简:
$\sqrt{x+2\sqrt{x-1}}$+$\sqrt{x-2\sqrt{x-1}}$(x≥1)

查看答案和解析>>

同步练习册答案