精英家教网 > 高中数学 > 题目详情

【题目】若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,则f(x)的最大值为

【答案】16
【解析】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣2对称,
∴f(﹣1)=f(﹣3)=0且f(1)=f(﹣5)=0,
即[1﹣(﹣3)2][(﹣3)2+a(﹣3)+b]=0且[1﹣(﹣5)2][(﹣5)2+a(﹣5)+b]=0,
解之得
因此,f(x)=(1﹣x2)(x2+8x+15)=﹣x4﹣8x3﹣14x2+8x+15,
求导数,得f′(x)=﹣4x3﹣24x2﹣28x+8,
令f′(x)=0,得x1=﹣2﹣ ,x2=﹣2,x3=﹣2+
当x∈(﹣∞,﹣2﹣ )时,f′(x)>0;当x∈(﹣2﹣ ,﹣2)时,f′(x)<0;
当x∈(﹣2,﹣2+ )时,f′(x)>0; 当x∈(﹣2+ ,+∞)时,f′(x)<0
∴f(x)在区间(﹣∞,﹣2﹣ )、(﹣2,﹣2+ )上是增函数,在区间(﹣2﹣ ,﹣2)、(﹣2+ ,+∞)上是减函数.
又∵f(﹣2﹣ )=f(﹣2+ )=16,
∴f(x)的最大值为16.
所以答案是:16.
【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正项数列{an}的前n项和Sn满足:Sn2
(1)求数列{an}的通项公式an
(2)令b ,数列{bn}的前n项和为Tn . 证明:对于任意n∈N* , 都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数满足,且, ,则函数的零点个数是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|x2﹣2x>0}, ,则(
A.A∩B=
B.A∪B=R
C.BA
D.AB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)设函数.

(Ⅰ)讨论函数的单调性;

(Ⅱ)当函数有最大值且最大值大于时,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1 , ∠BAA1=60°.

(1)证明AB⊥A1C;
(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(选修4﹣5:不等式选讲)
已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)设a>﹣1,且当 时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:

232

321

230

023

123

021

132

220

001

231

130

133

231

031

320

122

103

233

由此可以估计事件发生的概率为(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设a,b∈R.若直线l:ax+y﹣7=0在矩阵A= 对应的变换作用下,得到的直线为l′:9x+y﹣91=0.求实数a,b的值.

查看答案和解析>>

同步练习册答案