精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中为自然对数的底数.

(Ⅰ)若曲线在点处的切线与直线垂直,求实数的值;

(Ⅱ)求函数的单调区间;

(Ⅲ)用表示中的较大者,记函数.若函数内恰有2个零点,求实数的取值范围.

【答案】(Ⅰ)(Ⅱ)见解析(Ⅲ)

【解析】

(Ⅰ)根据垂直关系,利用求得;(Ⅱ)求导后,分别在两个范围内判断导函数的正负,根据导函数的符号确定原函数的单调区间;(Ⅲ)首先确定内单调递减;当时,由于,根据定义可知此时无零点;当时,为零点,反之则不是零点,由此可得两种情况下的范围;当时,结合单调性和零点存在定理可判断出时,有一个零点.此时综合为零点时的范围,即可得到所求结果.

(Ⅰ)

由题意得:,解得:

(Ⅱ)由(1)知,

①当时,

函数内单调递增

②当时,令,解得:

时,,则单调递增

时,,则单调递减

函数的单调递增区间为;单调递减区间为

(Ⅲ)函数的定义域为

内单调递减

⑴当时,

依题意,,则函数无零点;

⑵当时,

①若,即,则是函数的一个零点;

②若,即,则不是函数的零点;

⑶当时,,只需考虑函数内零点的情况

①当时,,函数内单调递增

i)当时,,函数内无零点;

ii)当时,

此时函数内恰有一个零点;

②当时,由(Ⅱ)知,函数内单调递减,在内单调递增

此时函数内恰有一个零点

综合⑴⑵⑶可知,当时,内恰有个零点

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了解观众对某综艺节目的评价情况,栏目组随机抽取了名观众进行评分调查(满分),并统计得到如图所示的频率分布直方图,以下说法错误的是(

A.参与评分的观众评分在的有

B.观众评分的众数约为

C.观众评分的平均分约为

D.观众评分的中位数约为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,以椭圆E的长轴和短轴为对角线的四边形的面积为.

1)求椭圆E的方程;

2)若直线与椭圆E相交于AB两点,设P为椭圆E上一动点,且满足O为坐标原点).时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点,一条垂直于轴的直线分别与线段和直线交于点.

(1)若,求的值;

(2)若为线段的中点,求证:直线与该抛物线有且仅有一个公共点.

(3)若直线的斜率存在,且与该抛物线有且仅有一个公共点,试问是否一定为线段的中点?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆),过原点的两条直线分别与交于点,得到平行四边形.

1)当为正方形时,求该正方形的面积.

2)若直线关于轴对称,上任意一点的距离分别为,当为定值时,求此时直线的斜率及该定值.

3)当为菱形,且圆内切于菱形时,求满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正方体中,分别是棱的中点,分别是线段上的点,则与平面平行的直线有(

A.0B.1C.2D.无数条

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点分别是椭圆的左顶点和上顶点,为其右焦点,,且该椭圆的离心率为

1)求椭圆的标准方程;

2)设点为椭圆上的一动点,且不与椭圆顶点重合,点为直线轴的交点,线段的中垂线与轴交于点,若直线斜率为,直线的斜率为,且为坐标原点),求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx)=|xa|+|x+1|aR),gx)=|2x1|+2.

1)若a1,证明:不等式fxgx)对任意的xR成立;

2)若对任意的mR,都有tR,使得fm)=gt)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求的最大值;

2)若只有一个极值点.

i)求实数的取值范围;

ii)证明:.

查看答案和解析>>

同步练习册答案