【题目】已知函数,,其中为自然对数的底数.
(Ⅰ)若曲线在点处的切线与直线垂直,求实数的值;
(Ⅱ)求函数的单调区间;
(Ⅲ)用表示,中的较大者,记函数.若函数在内恰有2个零点,求实数的取值范围.
【答案】(Ⅰ)(Ⅱ)见解析(Ⅲ)
【解析】
(Ⅰ)根据垂直关系,利用求得;(Ⅱ)求导后,分别在和两个范围内判断导函数的正负,根据导函数的符号确定原函数的单调区间;(Ⅲ)首先确定在内单调递减;当时,由于,根据定义可知此时无零点;当时,则为零点,反之则不是零点,由此可得两种情况下的范围;当时,结合单调性和零点存在定理可判断出时,有一个零点.此时综合为零点时的范围,即可得到所求结果.
(Ⅰ)
由题意得:,解得:
(Ⅱ)由(1)知,
①当时,
函数在内单调递增
②当时,令,解得:或
当或时,,则单调递增
当时,,则单调递减
函数的单调递增区间为和;单调递减区间为
(Ⅲ)函数的定义域为,
在内单调递减
⑴当时,
依题意,,则函数无零点;
⑵当时,,
①若,即,则是函数的一个零点;
②若,即,则不是函数的零点;
⑶当时,,只需考虑函数在内零点的情况
①当时,,函数在内单调递增
又
(i)当时,,函数在内无零点;
(ii)当时,
又
此时函数在内恰有一个零点;
②当时,由(Ⅱ)知,函数在内单调递减,在内单调递增
,
此时函数在内恰有一个零点
综合⑴⑵⑶可知,当时,在内恰有个零点
科目:高中数学 来源: 题型:
【题目】为了解观众对某综艺节目的评价情况,栏目组随机抽取了名观众进行评分调查(满分分),并统计得到如图所示的频率分布直方图,以下说法错误的是( )
A.参与评分的观众评分在的有人
B.观众评分的众数约为分
C.观众评分的平均分约为分
D.观众评分的中位数约为分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以椭圆E的长轴和短轴为对角线的四边形的面积为.
(1)求椭圆E的方程;
(2)若直线与椭圆E相交于A,B两点,设P为椭圆E上一动点,且满足(O为坐标原点).当时,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点,一条垂直于轴的直线分别与线段和直线交于点.
(1)若,求的值;
(2)若为线段的中点,求证:直线与该抛物线有且仅有一个公共点.
(3)若直线的斜率存在,且与该抛物线有且仅有一个公共点,试问是否一定为线段的中点?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:(),过原点的两条直线和分别与交于点、和、,得到平行四边形.
(1)当为正方形时,求该正方形的面积.
(2)若直线和关于轴对称,上任意一点到和的距离分别为和,当为定值时,求此时直线和的斜率及该定值.
(3)当为菱形,且圆内切于菱形时,求,满足的关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,分别是椭圆的左顶点和上顶点,为其右焦点,,且该椭圆的离心率为;
(1)求椭圆的标准方程;
(2)设点为椭圆上的一动点,且不与椭圆顶点重合,点为直线与轴的交点,线段的中垂线与轴交于点,若直线斜率为,直线的斜率为,且(为坐标原点),求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣a|+|x+1|(a∈R),g(x)=|2x﹣1|+2.
(1)若a=1,证明:不等式f(x)≤g(x)对任意的x∈R成立;
(2)若对任意的m∈R,都有t∈R,使得f(m)=g(t)成立,求实数a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com