精英家教网 > 高中数学 > 题目详情

【题目】某研究性学习小组对昼夜温差大小与某种子发芽多少之间的关系进行研究,下面是3月1日至5日每天昼夜温差与实验室每天每100颗种子浸泡后的发芽数的详细记录:

(1)根据3月2日至3月4日的数据,用最小二乘法求出y关于x的线性回归方程;

日期

3月1日

3月2日

3月3日

3月4日

3月5日

温差

10

11

13

12

8

发芽数

23

25

30

26

16

(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均小于2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?

参考公式:

【答案】(1) (2)见解析

【解析】

1)先求出温差x和发芽数y的平均值,即得到样本中心点,利用最小二乘法得到线性回归方程的系数,根据样本中心点在线性回归直线上,得到a值,即得线性回归方程;(2)分别验证当x10x8时的y值,验证|y23|2|y16|2可得结论.

1)由数据,求得

.由公式,求得

所以y关于x的线性回归方程为

2)当x10时, |2223|2

同样,当x8时,|1716|2

所以,该研究所得到的线性回归方程是可靠的.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正三棱柱中,的中点,是线段上的动点,且.

(1)若,求证:

(2)求二面角的余弦值;

(3)若直线与平面所成角的大小为,求的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(1)讨论的单调性;

(2)当时,函数的图像上存在点在函数的图像的下方,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的正整数,若数列满足对任意正整数总成立,则称数列是“数列”.

(1)证明:等差数列是“数列”;

(2)若数列既是“数列”,又是“数列”,证明: 是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线C:ρ=2sinθ,A、B为曲线C的两点,以极点为原点,极轴为x轴非负半轴的直角坐标中,曲线E:是参数)上一点P,则∠APB的最大值为 (   )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

() 若函数有零点, 求实数的取值范围;

() 证明:,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一几何体的平面展开图,其中四边形为正方形,分别为的中点.在此几何体中,给出下列结论,其中正确的结论是( )

A.平面平面B.直线平面

C.直线平面D.直线平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】本小题满分12分已知在四棱锥底面是矩形平面分别是线段的中点.

1判断并说明上是否存在点使得平面?若存在,求出的值;若不

存在,请说明理由

2与平面所成的角为求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某集团为了获得更大的收益,每年要投入一定的资金用于广告促销.经调查投入广告费t(百万元),可增加销售额约为-t25t(百万元)(0t5) (注:收益=销售额-投放)

1)若该公司将当年的广告费控制在3百万元之内,则应投入多少广告费,才能使该公司由此获得的收益最大?

2)现该公司准备共投入3百万元,分别用于广告促销和技术改造.经预测,每投入技术改造费x(百万元),可增加的销售额约为-x3x23x(百万元).请设计一个资金分配方案,使该公司由此获得的收益最大.

查看答案和解析>>

同步练习册答案