精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项的和为Sn,且有a1=2,3Sn=5an-an-1+3Sn-1(n≥2,n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(2n-1)an,求数列{bn}的前n项的和Tn
分析:(Ⅰ)对3Sn=5an-an-1+3Sn-1化简整理得
an
an-1
=
1
2
,进而可以推断数列{an}是以2为首项,
1
2
为公比的等比数列,根据等比数列的通项公式求得答案.
(Ⅱ)把(1)中求得an代入bn=(2n-1)an中求得bn,进而通过错位相减法求得Tn
解答:解:(Ⅰ)由3Sn=5an-an-1+3Sn-1
∴3an=5an-an-1(n≥2,n∈N*
an
an-1
=
1
2
,(n≥2,n∈N*),
所以数列{an}是以2为首项,
1
2
为公比的等比数列,
∴an=22-n
(Ⅱ)bn=(2n-1)•22-n
∴Tn=1×2+3×20+5×2-1++(2n-1)•22-n
同乘公比得
1
2
Tn=1×20+3×2-1+5×2-2++(2n-1)•21-n

1
2
Tn=1×2+2×20+2×2-1+2×2-2++2•22-n-(2n-1)21-n

=2+4[1-(
1
2
)n-1]-(2n-1)•21-n

∴Tn=12-(2n+3)•22-n
点评:本题主要考查了数列的递推式.对于由等比数列和等差数列构成的数列常可用错位相减法求得前n项和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案