精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ax2+bx+12
(1)若f(x)=ax2+bx+12<0的解集是{x|3<x<4},求a,b的解集;
(2)若g(x)=
f(x)x
(x>0,a>0)
,求g(x)的取值范围.
分析:(1)由题可知f(x)=ax2+bx+12=0的两根分别为3和4,根据韦达定理求得a,b的解集.
(2)由于x>0,利用基本不等式求得g(x)的取值范围.
解答:解:(1)由题可知f(x)=ax2+bx+12=0的两根分别为3和4.
根据韦达定理可得
3+4=-
b
a
3×4=
12
a
,解得
a=1
b=-7
,所以a={1},b={-7}.
(2)由于x>0,故g(x)=
f(x)
x
=
ax2+bx+12
x
=ax+b+
12
x
≥4
3a
+b

当且仅当ax=
12
x
x=
2
3a
a
时等号成立.
即g(x)的取值范围为[4
3a
+b,+∞)
点评:本题主要考查一元二次不等式的解法,基本不等式的应用,注意基本不等式的使用条件,并注意检验等号成立的条件,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案