【题目】已知函数,其中.
(1)当时,求曲线在点处的切线的斜率;
(2)当时,求函数的单调区间与极值.
【答案】(1) ;(2)当时,在内是增函数,在内是减函数,函数的极大值为,函数的极小值为;当时,在内是增函数,在内是减函数,函数的极大值为,函数在处取得极小值,且.
【解析】
试题分析:(1) 当时, 求 即可;(2)由得,或,分与讨论两根的大小,列表求单调区间与极值即可.
试题解析: (1)当时,故.
所以曲线在点处的切线的斜率为
(2)解:.
令,解得,或.由知,.
以下分两种情况讨论:
若,则.当变化时,的变化情况如下表:
所以在内是增函数,在内是减函数.
函数在处取得极大值,且.
函数在处取得极小值,且.
若,则,当变化时,的变化情况如下表:
所以在内是增函数,在内是减函数.
函数在处取得极小值,且,
函数在处取得极大值,且.
科目:高中数学 来源: 题型:
【题目】已知直线().
(1)证明:直线过定点;
(2)若直线不经过第四象限,求的取值范围;
(3)若直线轴负半轴于,交轴正半轴于,△的面积为(为坐标原点),求的最小值,并求此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,,.
(Ⅰ)问乙出发多少分钟后,乙在缆车上与甲的距离最短?
(Ⅱ)为使两位游客在处互相等待的时间不超过分钟,乙步行的速度应控制在什么范围内?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,在边长为1的等边三角形ABC中,D,E分别是AB,AC边上的点,AD=AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到如图2所示的三棱锥A﹣BCF,其中BC=.
(Ⅰ)证明:DE∥平面BCF;
(Ⅱ)证明:CF⊥平面ABF;
(Ⅲ)当AD=时,求三棱锥F﹣DEG的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,点是圆上的任意一点,线段的垂直平分线与直线交于点.
(Ⅰ)求点的轨迹方程;
(Ⅱ)若直线与点的轨迹有两个不同的交点和,且原点总在以为直径的圆的内部,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知国家某5A级大型景区对拥挤等级与每日游客数量(单位:百人)的关系有如下规定:当时,拥挤等级为“优”;当时,拥挤等级为“良”;当时,拥挤等级为“拥挤”;当时,拥挤等级为“严重拥挤”。该景区对6月份的游客数量作出如图的统计数据:
(Ⅰ)下面是根据统计数据得到的频率分布表,求出的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);
游客数量 (单位:百人) | ||||
天数 | ||||
频率 |
(Ⅱ)某人选择在6月1日至6月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为“优”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=si n-2cos2+1.
(1)求f(x)的最小正周期;
(2)若函数y=f(x)与y=g(x)的图象关于直线x=1对称,求当x∈时,y=g(x)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列中,,点()在直线y = x上,
(Ⅰ)计算a2,a3,a4的值;
(Ⅱ)令bn=an+1﹣an﹣1,求证:数列{bn}是等比数列;
(Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在实数λ,使得数列为等差数列?若存在,试求出λ的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com