精英家教网 > 高中数学 > 题目详情

【题目】已知关于不等式的解集为.

(1)当为空集时,求的取值范围;

(2)在(1)的条件下,求的最小值;

(3)当不为空集,且时,求实数的取值范围.

【答案】(1)(2)最小值为(3)

【解析】

(1)为空集时,说明方程无实根,利用用根的判别式求出的取值范围;

(2)把函数的解析式变形为,运用基本不等式,求出函数的最小值;

(3)不为空集,且时,说明方程上存在两个实根,利用二次函数的图象与性质,可得到关于实数的不等式组,解这个不等式组即可求出实数的取值范围.

解:(1)为空集, 方程无实根,

,即,解得,

实数的取值范围为;

(2)由(1)知,则,

当且仅当,即时等号成立.

所以的最小值为.

(3)令,

不为空集时,由,得

,解得.综上,实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】以下有四个说法:

①若为互斥事件,则

中,,则

的最大公约数是

④周长为的扇形,其面积的最大值为

其中说法正确的个数是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(1)请完成上面的列联表;

(2)根据列联表的数据,若按99%的可靠性要求,能否认为“成绩与班级有关系”;

(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.

参考公式及数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定直线l:y=x+3,定点A(2,1),以坐标轴为对称轴的椭圆C过点A且与l相切.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)椭圆的弦AP,AQ的中点分别为M,N,若MN平行于l,则OM,ON斜率之和是否为定值?若是定值,请求出该定值;若不是定值请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面命题正确的是(

A.”是“”的 充 分不 必 要条件

B.命题“若,则”的 否 定 是“ 存 在,则”.

C.,则“”是“”的必要而不充分条件

D.,则“”是“”的必要 不 充 分 条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,a1=4,nan+1﹣(n+1)an=2n2+2n.
(Ⅰ)求证:数列 是等差数列;
(Ⅱ)求数列 的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数集A由实数构成:且满足:若,则

(1)若,试证明A中还有另外两个元素;

(2)集合A是否为双元素集合,并说明理由;

(3)若集合A是有限集,求集合A中所有元素的积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,并且b=2
(1)若角A,B,C成等差数列,求△ABC外接圆的半径;
(2)若三边a,b,c成等差数列,求△ABC内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱台ABCD﹣A1B1C1D1中,底面ABCD为平行四边形,∠BAD=120°,M为CD上的点.且∠A1AB=∠A1AD=90°,AD=A1A=2,A1B1=DM=1.
(1)求证:AM⊥A1B;
(2)若M为CD的中点,N为棱DD1上的点,且MN与平面A1BD所成角的正弦值为 ,试求DN的长.

查看答案和解析>>

同步练习册答案