精英家教网 > 高中数学 > 题目详情
(本小题10分)
分别为椭圆的左、右两个焦点.(1)若椭圆上的点两点的距离之和等于4,求椭圆的方程和焦点坐标;(2)设点P是(1)中所得椭圆上的动点,
解:(Ⅰ)椭圆C的焦点在x轴上,
由椭圆上的点A到F1、F2两点的距离之和是4,
得2a=4,即a=2.           ------------------------------2分
又点 …….4分
所以椭圆C的方程为       …….5分
(Ⅱ)设              …….7分
 …….10分
                                       …….9分
             …….10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆=1(a>b>0)上的点M (1, )到它的两焦点F1,F2的距离之和为4,A、B分别是它的左顶点和上顶点。
(Ⅰ)求此椭圆的方程及离心率;
(Ⅱ)平行于AB的直线l与椭圆相交于P、Q两点,求|PQ|的最大值及此时直线l的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点动点满足,当点的纵坐标为时,点到坐标原点的距离为   

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,直线,椭圆分别为椭圆的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆交于两点,的重心分别为若原点在以线段为直径的圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设直线与椭圆相交于两个不同的点.
(1)求实数的取值范围;
(2)当时,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

中心点在原点,准线方程为,离心率为的椭圆方程是(      )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设椭圆C:的左、右焦点分别为,点满足  
(Ⅰ)求椭圆C的离心率
(Ⅱ)若已知点,设直线与椭圆C相交于A,B两点,且
求椭圆C的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆C:为椭圆C的两焦点,P为椭圆C上一点,连接
延长交椭圆于另外一点Q,则⊿的周长_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分) 已知抛物线的顶点是椭圆的中心,焦点与该椭圆的右焦点重合.
(1)求抛物线的方程;
(2)已知动直线过点,交抛物线两点.
若直线的斜率为1,求的长;
是否存在垂直于轴的直线被以为直径的圆所截得的弦长恒为定值?如果存在,求出的方程;如果不存在,说明理由.

查看答案和解析>>

同步练习册答案