精英家教网 > 高中数学 > 题目详情
有下列命题:
①在函数的图象中,相邻两个对称中心的距离为
②若锐角α,β满足
③函数f(x)=ax2-2ax-1有且仅有一个零点,则实数a=-1;
④要得到函数的图象,只需将的图象向右平移个单位.
⑤非零向量满足||=||=|-|,则+的夹角为60°.
其中所有真命题的序号是   
【答案】分析:①将f(x)=cos(x+)化为f(x)=cos2x,可求其周期,图象上相邻两个对称中心的距离是,从而进行求解;
②将sinβ=cos(-β),代入cosα>sinβ,进行求解;
③函数f(x)=)=ax2-2ax-1,利用图象的性质可得△=0,进行求解;
④函数的图象,根据平移的性质,进行求解;
⑤非零向量满足||=||=||,可以推出+的夹角为30°,从而进行判断;
解答:解:①∵f(x)=cos(x-)cos(x+)=cos2x,
∴其周期T=π,又图象上相邻两个对称中心的距离是,故①正确;
②∵cosα>sinβ,cosα>cos(-β),可得cosα-cos(-β)>0,
∵α,β是锐角,
∴α<-β,即α+β<;故②正确;
③函数f(x)=ax2-2ax-1有且仅有一个零点,
∴△=(-2a)2-4a×(-1)=4a2+4a=0,解得a=-1,a=0(舍去),故③正确;
④要得到函数的图象,只需将函数y=sin的图象向右平移个单位可得,故④错误;
⑤非零向量满足||=||=||,∴+的夹角为30°,故⑤错误;
故答案为:①②③;
点评:此题考查三角函数的性质及函数的性质,考查的知识点比较全面,是一道基础题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列命题:
①如果幂函数f (x)=(m2-3m+3)xm2-m-1的图象不过原点,则m=l或2;
②数列{an}为等比数列的充要条件为an=a1qn-1(q为常数):
③已知向量
a
=(t,2),
b
=(-3,6),若向量
a
b
的夹角为锐角,则实数t的取值范围是t<4; 
④函数f (x)=xsinx在(0,π)上有最大值,没有最小值.
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源:北京市石景山区2006-2007学年度高三年级第一学期期末统一考试、数学(理科) 题型:022

对于函数有下列命题:

①过该函数图像上一点(-2,f(-2))的切线的斜率为

②函数f(x)的最小值为

③该函数图像与轴有4个交点;

④函数f(x)在(-∞,-1]上为减函数,在(0,1]上也为减函数.

其中正确命题的序号是________

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

有下列命题:
①如果幂函数f (x)=(m2-3m+3)xm2-m-1的图象不过原点,则m=l或2;
②数列{an}为等比数列的充要条件为an=a1qn-1(q为常数):
③已知向量
a
=(t,2),
b
=(-3,6),若向量
a
b
的夹角为锐角,则实数t的取值范围是t<4; 
④函数f (x)=xsinx在(0,π)上有最大值,没有最小值.
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省枣庄市高三(上)期中数学试卷(理科)(解析版) 题型:选择题

有下列命题:
①如果幂函数f (x)=(m2-3m+3)的图象不过原点,则m=l或2;
②数列{an}为等比数列的充要条件为an=a1qn-1(q为常数):
③已知向量=(t,2),=(-3,6),若向量的夹角为锐角,则实数t的取值范围是t<4; 
④函数f (x)=xsinx在(0,π)上有最大值,没有最小值.
其中正确命题的个数为( )
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省枣庄市高三(上)期中数学试卷(理科)(解析版) 题型:选择题

有下列命题:
①如果幂函数f (x)=(m2-3m+3)的图象不过原点,则m=l或2;
②数列{an}为等比数列的充要条件为an=a1qn-1(q为常数):
③已知向量=(t,2),=(-3,6),若向量的夹角为锐角,则实数t的取值范围是t<4; 
④函数f (x)=xsinx在(0,π)上有最大值,没有最小值.
其中正确命题的个数为( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案