£¨2011•¶«³ÇÇøÄ£Ä⣩¶ÔÊýÁÐ{an}£¬¹æ¶¨{¡÷an}ΪÊýÁÐ{an}µÄÒ»½×²î·ÖÊýÁУ¬ÆäÖС÷an=an+1-an£¨n¡ÊN*£©£®¶ÔÕýÕûÊýk£¬¹æ¶¨ {¡÷kan}Ϊ{an}µÄk½×²î·ÖÊýÁУ¬ÆäÖС÷kan=¡÷k-1an+1-¡÷k-1an=¡÷£¨¡÷k-1an£©£®
£¨¢ñ£©ÈôÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒÂú×ã¡÷2an-¡÷an+1+an=-2n£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©¶Ô£¨¢ñ£©ÖеÄÊýÁÐ{an}£¬ÈôÊýÁÐ{bn}ÊǵȲîÊýÁУ¬Ê¹µÃb1Cn1+b2Cn2+b3Cn3+¡­+bn-1Cnn-1+bnCnn=an¶ÔÒ»ÇÐÕýÕûÊýn¡ÊN*¶¼³ÉÁ¢£¬Çóbn£»
£¨¢ó£© ÔÚ£¨¢ò£©µÄÌõ¼þÏ£¬Áîcn=£¨2n-1£©bn£¬ÉèTn=
c1
a1
+
c2
a2
+
c3
a3
+¡­+
cn
an
£¬ÈôTn£¼m³ÉÁ¢£¬Çó×îСÕýÕûÊýmµÄÖµ£®
·ÖÎö£º£¨¢ñ£©ÓÉ¡÷2an-¡÷an+1+an=-2n¼°¡÷2an=¡÷an+1-¡÷an£¬¿ÉµÃ¡÷an-an=2n£¬¼´¿ÉµÃan+1-2an=2n£¬¹¹Ôì¿ÉµÃ
an+1
2n+1
-
an
2n
=
1
2
£¬½áºÏµÈ²îÊýÁеÄͨÏî¿ÉÇó
an
2n
£¬½ø¶ø¿ÉÇó
£¨¢ò£©ÓÉb1Cn1+b2Cn2+b3Cn3+¡­+bn-1Cnn-1+bnCnn=an£¬¿ÉµÃb1Cn1+b2Cn2+b3Cn3+¡­+bn-1Cnn-1+bnCnn=n•2n-1£®ÓÉ×éºÏÊýµÄÐÔÖÊkCnk=nCn-1k-1£¬¿ÉÖªCn1+2Cn2+¡­+nCnn=n£¨Cn-10+¡­+Cn-1n-1£©£¬´Ó¶ø¿ÉÇóbn
£¨¢ó£©ÓÉ£¨¢ò£©µÃ Tn=
1
1
+
3
2
+
5
22
+¡­+
2n-1
2n-1
£¬ÀûÓôíλÏà¼õ¿ÉÇóTn=6-
1
2n-3
-
2n-1
2n-1
£¼6ÓÖTn=
1
1
+
3
2
+
5
22
+¡­+
2n-1
2n-1
£¬£¬ÀûÓõ¥µ÷ÐԵĶ¨Òå¿ÉÖªTn+1-Tn£¾0£¬{Tn}ÊǵÝÔöÊýÁУ¬ÇÒT6=6-
1
23
-
11
25
£¾5£¬´Ó¶ø¿ÉÇóm
½â´ð£º½â£º£¨¢ñ£©ÓÉ¡÷2an-¡÷an+1+an=-2n¼°¡÷2an=¡÷an+1-¡÷an£¬
µÃ¡÷an-an=2n£¬
¡àan+1-2an=2n£¬
¡à
an+1
2n+1
-
an
2n
=
1
2
£¬---------------£¨2·Ö£©
¡àÊýÁÐ{
an
2n
}
ÊÇÊ×ÏîΪ
1
2
£¬¹«²îΪ
1
2
µÄµÈ²îÊýÁУ¬
¡à
an
2n
=
1
2
+(n-1)¡Á
1
2
£¬
¡àan=n•2n-1£®--------£¨4·Ö£©
£¨¢ò£©¡ßb1Cn1+b2Cn2+b3Cn3+¡­+bn-1Cnn-1+bnCnn=an£¬
¡àb1Cn1+b2Cn2+b3Cn3+¡­+bn-1Cnn-1+bnCnn=n•2n-1£®
¡ßkCnk=nCn-1k-1£¬
¡à
C
1
n
+2
C
2
n
+3
C
3
n
+¡­+(n-1)
C
n-1
n
+n
C
n
n
=n
C
0
n-1
+n
C
1
n-1
+n
C
2
n-1
+¡­+n
C
n-1
n-1
=n(
C
0
n-1
+
C
1
n-1
+
C
2
n-1
+¡­+
C
n-1
n-1
)=n•2n-1.

¡àbn=n£®------------£¨9·Ö£©
£¨¢ó£©ÓÉ£¨¢ò£©µÃ  
Tn=
1
1
+
3
2
+
5
22
+¡­+
2n-1
2n-1
£¬¢Ù
  
1
2
Tn=
1
2
+
3
22
+
5
23
+¡­+
2n-1
2n
£¬¢Ú
¢Ù-¢ÚµÃ 
1
2
Tn=1+1+
1
2
+
1
22
+
1
23
+¡­+
1
2n-2
-
2n-1
2n
=3-
1
2n-2
-
2n-1
2n
£¬
¡àTn=6-
1
2n-3
-
2n-1
2n-1
£¼6£¬----------£¨10·Ö£©
ÓÖTn=
1
1
+
3
2
+
5
22
+¡­+
2n-1
2n-1
£¬
¡àTn+1-Tn£¾0£¬
¡à{Tn}ÊǵÝÔöÊýÁУ¬ÇÒT6=6-
1
23
-
11
25
£¾5£¬
¡àÂú×ãÌõ¼þµÄ×îСÕýÕûÊýmµÄֵΪ6£®--------£¨13·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÓÉж¨Òå¹¹ÔìµÈ²îÊýÁÐÇó½âÊýÁеÄͨÏʽ£¬¶þÏîʽϵÊýµÄÐÔÖÊÓ¦Óã¬ÊýÁÐÇóºÍµÄ´íλÏà¼õµÄÓ¦Ó㬼°ÊýÁе¥µ÷ÐÔµÄÓ¦Óã¬ÊôÓÚ×ÛºÏÐÔÊÔÌâ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¶«³ÇÇø¶þÄ££©¸ø³öÏÂÁÐÈý¸öÃüÌ⣺
¢Ù?x¡ÊR£¬x2£¾0£»
¢Ú?x0¡ÊR£¬Ê¹µÃx02¡Üx0³ÉÁ¢£»
¢Û¶ÔÓÚ¼¯ºÏM£¬N£¬Èôx¡ÊM¡ÉN£¬Ôòx¡ÊMÇÒx¡ÊN£®
ÆäÖÐÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¶«³ÇÇø¶þÄ££©ÒÑÖªÕýÏîÊýÁÐ{an}ÖУ¬a1=1£¬a2=2£¬2an2=an+12+an-12£¨n¡Ý2£©£¬Ôòa6µÈÓÚ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¶«³ÇÇø¶þÄ££©ÒÑ֪˫ÇúÏß
x2
a2
-
y2
b2
=1 (a£¾0£¬b£¾0)
£¬¹ýÆäÓÒ½¹µãÇÒ´¹Ö±ÓÚʵÖáµÄÖ±ÏßÓëË«ÇúÏß½»ÓÚM£¬NÁ½µã£¬OΪ×ø±êÔ­µã£®ÈôOM¡ÍON£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¶«³ÇÇø¶þÄ££©Ä³µØΪÁ˵÷²éÖ°ÒµÂúÒâ¶È£¬¾ö¶¨Ó÷ֲã³éÑùµÄ·½·¨´Ó¹«ÎñÔ±¡¢½Ìʦ¡¢×ÔÓÉÖ°ÒµÕßÈý¸öȺÌåµÄÏà¹ØÈËÔ±ÖУ¬³éÈ¡Èô¸ÉÈË×é³Éµ÷²éС×飬ÓйØÊý¾Ý¼ûÏÂ±í£¬Ôòµ÷²éС×éµÄ×ÜÈËÊýΪ
9
9
£»Èô´Óµ÷²éС×éÖеĹ«ÎñÔ±ºÍ½ÌʦÖÐËæ»úÑ¡2ÈË׫дµ÷²é±¨¸æ£¬ÔòÆäÖÐÇ¡ºÃÓÐ1ÈËÀ´×Ô¹«ÎñÔ±µÄ¸ÅÂÊΪ
3
5
3
5
£®
Ïà¹ØÈËÔ±Êý ³éÈ¡ÈËÊý
¹«ÎñÔ± 32 x
½Ìʦ 48 y
×ÔÓÉÖ°ÒµÕß 64 4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¶«³ÇÇø¶þÄ££©ÒÑÖªµãP£¨2£¬t£©ÔÚ²»µÈʽ×é
x-y-4¡Ü0
x+y-3¡Ü0
±íʾµÄƽÃæÇøÓòÄÚ£¬ÔòµãP£¨2£¬t£©µ½Ö±Ïß3x+4y+10=0¾àÀëµÄ×î´óֵΪ
4
4
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸