精英家教网 > 高中数学 > 题目详情

设函数f(x)=x2+ax+lg|a+1|(a≠-1,a∈R)

(1)求证:f(x)能表示成一个奇函数g(x)和一个偶函数h(x)之和,并求出g(x)和h(x)的表达式.

(2)若f(x)和g(x)在区间[|a+1|,a2]上均为减函数,求a的取值范围.

答案:
解析:

  (1)解:依题意,应有奇函数g(x),偶函数h(x),使得:

  (1)解:依题意,应有奇函数g(x),偶函数h(x),使得:

  成立,由此得:g(x)=[f(x)-f(-x)]=ax,h(x)=[f(x)+f(-x)]=x2+lg|a+1|.

  (2)g(x)=ax,当且仅当a<0时,是减函数,从而a<0.

  f(x)=(x+)2+lg|a+1|-,f(x)在(-∞,-]上是减函数.

  若f(x),g(x)在区间[|a+1|,a2]上都是减函数,其充要条件是

  由此得-≤a<-


练习册系列答案
相关习题

科目:高中数学 来源:2004年高考教材全程总复习试卷·数学 题型:044

设函数f(x)=x+,x∈[0,+∞)

(1)当a=2时,求f(x)的最小值.

(2)当0<a<1时,判断f(x)的单调性,并写出f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源:2004全国各省市高考模拟试题汇编(天利38套)·数学 题型:044

设函数f(x)=x2-2mx+m2+1(m∈R+),g(x)=x+(k∈R+).

(1)当x∈(0,∞)时,f(x)和g(x)都满足:存在实数a,使f(x)≥f(a),g(x)≥g(a)且f(a)=g(a)-m.求f(x)和g(x)的表达式;

(2)(文科不做、理科做)对于(1)中的f(x),设实数b满足|x-b|<1.

求证:|f(x)-f(b)|<2|b|+5.

查看答案和解析>>

科目:高中数学 来源:2004全国各省市高考模拟试题汇编(天利38套)·数学 题型:044

设函数f(x)=ax2+bx+1(a、b∈R)

(1)若f(-1)=0,则对任意实数均有f(x)≥0成立,求f(x)的表达式.

(2)(文)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k的取值范围.

(理)在(1)的条件下,当x∈[-2,2]时,g(x)=xf(x)-kx是单调递增,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源:成功之路·突破重点线·数学(学生用书) 题型:044

设函数f(x)=ax2+bx+1(a、b∈R)

(1)若f(-1)=0,则对任意实数均有f(x)≥0成立,求f(x)的表达式.

(2)在(1)条件下,当x∈[-2,2],g(x)=xf(x)-kx单调递增,求实数k的取值范围.

查看答案和解析>>

同步练习册答案