精英家教网 > 高中数学 > 题目详情

【题目】已知a>0且a≠1,函数f(x)= (ax﹣ax),g(x)=﹣ax+2.
(1)指出f(x)的单调性(不要求证明);
(2)若有g(2)+f(2)=3,求g(﹣2)+f(﹣2)的值;
(3)若h(x)=f(x)+g(x)﹣2,求使不等式h(x2+tx)+h(4﹣x)<0恒成立的t的取值范围.

【答案】
(1)解:由题意:函数f(x)= (ax﹣ax),

①当0<a<1时, 递减,

②当a>1时, 递减,

∴当且a>0且a≠1时,f(x)是减函数


(2)解:由题意g(x)=﹣ax+2.

设h(x)=f(x)+g(x)﹣2,则:h(x)= ,其定义域为R,关于原点对称,

h(﹣x)= = =﹣[ ]=﹣h(x)

∵h(﹣x)=﹣h(x),

∴h(x)是定义域为R的奇函数.

∵g(2)+f(2)=3,则:h(2)=1,

∴h(﹣2)=﹣1,即:g(2)+f(2)﹣2=﹣1

所以g(2)+f(2)=1


(3)解:由(2)知h(x)是定义域为R的奇函数,且在R上为减函数,

由h(x2+tx)+h(4﹣x)<0,则有:h(x2+tx)<h(﹣4+x)

∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0 恒成立,

∴△=b2﹣4ac=(t﹣1)2﹣16<0

解得:﹣3<t<5,

故得t的取值范围是(﹣3,5)


【解析】(1)利用指数函数的单调性,对底数a讨论,即可单调性.(2)令f(x)+g(x)﹣2=h(x).证明其奇偶性,利用奇偶性求值.(3)利用(1)(2)中的结论,将不等式转化为二次函数恒成立问题,即可求解t的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知两点A(﹣1,2),B(m,3).且实数m∈[﹣ ﹣1, ﹣1],求直线AB的倾斜角α的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且过点

(1)求E的方程;

2)若直线E相交于两点,且为坐标原点)的斜率之和为2,求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作一直线与抛物线交于两点,点是抛物线上到直线的距离最小的点,直线与直线交于点.

()求点的坐标;

()求证:直线平行于抛物线的对称轴.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知,在直角坐标系中,直线的参数方程为为参数);在以坐标原点为极点, 轴的正半轴为极轴的极坐标系中,直线的极坐标方程是.

(Ⅰ)求证:

(Ⅱ)设点的极坐标为 为直线 的交点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥P﹣ABC中,PA垂直于底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知离心率为 的椭圆 过点M(2,1),O为坐标原点,平行于OM的直线i交椭圆C于不同的两点A、B.
(1)求椭圆C的方程;
(2)记直线MB、MA与x轴的交点分别为P、Q,若MP斜率为k1 , MQ斜率为k2 , 求k1+k2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二次函数f(x)=ax2+bx+c(a,b,c∈R)满足f(x+1)﹣f(x)=4x+1,且f(0)=3.
(1)求f(x)的解析式;
(2)设g(x)=f(2x),求g(x)在[﹣3,0]的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C与x轴相切,圆心C在射线3x﹣y=0(x>0)上,直线x﹣y=0被圆C截得的弦长为2
(1)求圆C标准方程;
(2)若点Q在直线l1:x+y+1=0上,经过点Q直线l2与圆C相切于p点,求|QP|的最小值.

查看答案和解析>>

同步练习册答案