精英家教网 > 高中数学 > 题目详情
12.在钝角△ABC中,c=$\sqrt{3}$,b=1,B=$\frac{π}{6}$,则△ABC的面积等于(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$或$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{2}$或$\sqrt{3}$

分析 由已知利用正弦定理可求sinC,结合C范围,可求C的值,进而利用三角形面积公式即可计算得解.

解答 解:∵c=$\sqrt{3}$,b=1,B=$\frac{π}{6}$,
∴sinC=$\frac{csinB}{b}$=$\frac{\sqrt{3}×\frac{1}{2}}{1}$=$\frac{\sqrt{3}}{2}$,
又∵C∈(0,π),
∴C=$\frac{π}{3}$或$\frac{2π}{3}$,
又∵△ABC为钝角三角形,
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{\sqrt{3}}{4}$.
故选:B.

点评 本题主要考查了正弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.定义在R上的函数f(x),已知y=f(x+2)是奇函数,当x>2时,f(x)单调递增,若x1+x2>4且(x1-2)•(x2-2)<0,x1+x2<4且(x1-2)•(x2-2)<0,则f(x1)+f(x2)值(  )
A.恒大于0B.恒小于0C.可正可负D.可能为0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.“若a+b+c=3,则a2+b2+c2≥3”的否命题是若a+b+c≠3,则a2+b2+c2<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系中,已知圆N的圆心N(3,4),且过点A(0,4).
(1)求圆N的方程;
(2)若过点D(3,6)的直线l被圆N所截得的弦长等于$4\sqrt{2}$,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过点P(3,2)作曲线C:x2+y2-2x=0的两条切线,切点分别为A,B,则直线AB的方程为(  )
A.2x+2y-3=0B.2x-2y-3=0C.4x-y-3=0D.4x+y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,四棱锥S-ABCD中,SA=SD=BC,底面ABCD为正方形,且平面SAD⊥平面ABCD,M,N分别是AB,SC的中点.
(1)若R为CD中点,分别连接MR,RN,NM,求证:BC∥平面MNR;
(2)求二面角S-CM-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}满足an=an-1+an-2(n>2),且a2015=1,a2017=-1,则a2000=(  )
A.0B.-3C.-4D.-18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在长方体ABCD-A1B1C1D1中,底面ABCD是边长为$\sqrt{2}$的正方形,AA1=3,E是AA1的中点,过C1作C1F⊥平面BDE与平面ABB1A1交于点F,则$\frac{AF}{{A{A_{1}}}}$等于(  )
A.$\frac{4}{7}$B.$\frac{5}{8}$C.$\frac{5}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=lnx,g(x)=$\frac{1}{2}{x^2}$-2x,当x>2时k(x-2)<xf(x)+2g'(x)+3恒成立,则整数k最大值为5.

查看答案和解析>>

同步练习册答案