精英家教网 > 高中数学 > 题目详情
9.如图,己知L、K分别是△ABC的边AB、AC的中点.△ABC的内切圆⊙l分别与边BC、CA切于点D、E.求证:KL、DE的交点在∠ABC的角平分线上.

分析 设KL与∠ABC的角平分线交于点S,DE与∠ABC的角平分线交于点T,进而证明出S,T重合,利用同一法,可得KL、DE的交点在∠ABC的角平分线上.

解答 证明:如图所示:设KL与∠ABC的角平分线交于点S,
∵L、K分别是△ABC的边AB、AC的中点.
∴LK∥BC,
∴∠LSB=∠CBS=∠LBS,
∴LB=LS,
又∵LA=LS,
∴S在以AB为直径的圆上,
∴∠ASB=90°,
设DE与∠ABC的角平分线交于点T,
则△ABC的内心I在点B,T之间,
当AB≠BC时,T≠E,且∠DEC=90°-$\frac{1}{2}$∠C,∠AIB=90°+$\frac{1}{2}$∠C,
如果T在线面DE内部,有∠AIT+∠AET=180°,
∴A,I,T,E四点共圆,
如果I和E在AT的同侧,则有∠AIT=90°,$\frac{1}{2}$∠C=∠AET,
也有A,I,T,E四点共圆,
∵∠AEI=90°,
∴∠AIT=90°,
∵∠ASB=∠ATB,
则S和T重合,
即KL、DE的交点在∠ABC的角平分线上.

点评 本题考查的知识点是圆的切线的性质定理,同一法证明,圆内接四边形的判定与性质,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.双曲线$\frac{{x}^{2}}{25-k}$+$\frac{{y}^{2}}{9-k}$=1的焦距为(  )
A.16B.8
C.4D.不确定,与k值有关

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.自⊙O外一点p引切线与⊙O切于点A,M为PA的中点,过M引割线交⊙O于B、C两点.
求证:
(Ⅰ)PM2=MB•MC;
(Ⅱ)∠MCP=∠MPB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,三棱柱ABC-A1B1C1中,AC⊥BC,侧棱C1C⊥平面ABC,AC=BC=CC1=2,B1C与BC1相交于点O,连结AB1,AC1
(1)求证:平面ABC1⊥平面B1AC.
(2)求四面体B1-ABC1的体积;
(3)求二面角B1-AB-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.直角三角形ABC的直角顶点为C,且AC=3cm,BC=4cm,P为斜边AB上一点,PQ平行于AC且交BC于点Q,PM平行于BC且交AC于点M,问点P在边AB何处时,矩形PQCM的面积最大?最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设偶函数f(x)对任意x∈R都有f(x)=-$\frac{1}{f(x-3)}$,且当x∈[-3,-2]时,f(x)=4x,则f(119.5)=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,a=80,b=100,A=30°,则B的解的个数是2个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{lnx}{x}$
(1)若直线y=kx与曲线f(x)=$\frac{lnx}{x}$相切,求实数k的值;
(2)若e<a<b,比较ab与ba的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设不等式$\frac{4-x}{x-2}>0$的解集为集合A,关于x的不等式x2+(2a-3)x+a2-3a+2<0的解集为集合B.
(Ⅰ)若A∩B=B,求实数a的取值范围;
(Ⅱ)若A∩B=∅,求实数a的取值范围.

查看答案和解析>>

同步练习册答案