【题目】等比数列{an}中,a2﹣a1=2,且2a2为3a1和a3的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=2log3an+1,且数列{ }的前n项和为Tn . 求Tn .
【答案】
(1)解:设等比数列{an}的公比为q,∵2a2为3a1和a3的等差中项,∴2×2a2=3a1+a3,化为4a1q= ,∴q2﹣4q+3=0,
解得q=1或3.又a2﹣a1=2,∴a1(q﹣1)=2,q≠1,∴ .
∴an=3n﹣1
(2)解:bn=2log3an+1=2n﹣1,
∴ = = .
∴数列{ }的前n项和为Tn=
=
= .
【解析】(1)设等比数列{an}的公比为q,由2a2为3a1和a3的等差中项,可得2×2a2=3a1+a3 , 利用等比数列的通项公式代入化简为q2﹣4q+3=0, 解得q.又a2﹣a1=2,a1(q﹣1)=2,q≠1,解出即可得出.(2)bn=2log3an+1=2n﹣1,可得 = = .再利用“裂项求和”方法即可得出.
【考点精析】通过灵活运用数列的前n项和和数列的通项公式,掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式即可以解答此题.
科目:高中数学 来源: 题型:
【题目】设函数(为自然对数的底数),, .
(1)若,且直线分别与函数和的图象交于,求两点间的最短距离;
(2)若时,函数的图象恒在的图象上方,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知与曲线相切的直线,与轴, 轴交于两点, 为原点, , ,( ).
(1)求证:: 与相切的条件是: .
(2)求线段中点的轨迹方程;
(3)求三角形面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在学校体育节中,某班全体40名同学参加跳绳、踢毽子两项比赛的人数统计如下:
参加跳绳的同学 | 未参加跳绳的同学 | |
参加踢毽的同学 | 9 | 4 |
未参加踢毽的同学 | 7 | 20 |
(1)从该班随机选1名同学,求该同学至少参加上述一项活动的概率;
(2)已知既参加跳绳又参加踢毽的9名同学中,有男生5名,女生4名,现从这5名男生,4名女生中各随机挑选1人,求男同学甲未被选中且女同学乙被选中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一鲜花店根据一个月(30天)某种鲜花的日销售量与销售天数统计如下,将日销售量落入各组区间频率视为概率.
日销售量(枝) | |||||
销售天数 | 3天 | 5天 | 13天 | 6天 | 3天 |
(1)试求这30天中日销售量低于100枝的概率;
(2)若此花店在日销售量低于100枝的时候选择2天作促销活动,求这2天恰好是在日销售量低于50枝时的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com