¸ø³öÏÂÁÐÎå¸öÃüÌ⣺
¢ÙÃüÌâ¡°ÈÎÒâx¡ÊR£¬x2¡Ý0¡±µÄ·ñ¶¨ÊÇ¡°´æÔÚx¡ÊR£¬x2¡Ü0¡±£»
¢ÚÈôµÈ²îÊýÁÐ{an}Ç°nÏîºÍΪSn£¬ÔòÈýµã£¨10£¬
S10
10
£©£¬£¨100£¬
S100
100
£©£¬£¨110£¬
S110
110
£©¹²Ïߣ»
¢ÛÈôº¯Êýf£¨x£©=x2+£¨a+2£©x+b£¬x¡Ê[a£¬b]µÄͼÏó¹ØÓÚÖ±Ïßx=1¶Ô³Æ£¬Ôòf£¨x£©µÄ×î´óֵΪ30£»
¢ÜÔÚ¡÷ABCÖУ¬Èôcos£¨2B+C£©+2sinAsinB=0£¬Ôò¡÷ABCÒ»¶¨ÊǵÈÑüÈý½ÇÐΣ»
¢Ýº¯Êý||x-1|-|x+1||¡Üaºã³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ[2£¬+¡Þ£©£®
ÆäÖмÙÃüÌâµÄÐòºÅÊÇ______£®£¨ÌîÉÏËùÓмÙÃüÌâµÄÐòºÅ£©
¢ÙÒòΪȫ³ÆÃüÌâµÄ·ñ¶¨ÊÇÌسÆÃüÌ⣬ËùÒÔÃüÌâ¡°ÈÎÒâx¡ÊR£¬x2¡Ý0¡±µÄ·ñ¶¨ÊÇ¡°´æÔÚx¡ÊR£¬x2£¼0¡±£¬ËùÒÔ¢Ù´íÎó£®
¢ÚÔڵȲîÊýÁÐÖУ¬
Sn
n
=a1+
(n-1)d
2
£¬ËùÒÔ
S10
10
=a1+
9
2
d£¬
S100
100
=a1+
99
2
d£¬
S110
110
=a1+
109
2
d
£¬ËùÒÔ¶ÔÓ¦ÈýµãA£¨10£¬
S10
10
£©£¬B£¨100£¬
S100
100
£©£¬C£¨110£¬
S110
110
£©µÄÏòÁ¿Îª
AB
=(90£¬45d)£¬
BC
=(10£¬5d)
£¬ËùÒÔ
AB
=9
BC
£¬¼´
AB
£¬
BC
¹²Ïߣ¬ËùÒÔA£¬B£¬CÈýµã¹²Ïߣ¬ËùÒÔ¢ÚÕýÈ·£®
¢ÛÒòΪº¯ÊýµÄ¶Ô³ÆÖáΪx=1£¬ËùÒÔ-
a+2
2
=1
£¬½âµÃa=-4£¬´Ëʱb=6£¬ËùÒÔf£¨x£©=x2-2x+6=£¨x-1£©2+5£¬ËùÒÔµ±x=-4»òx=6ʱ£¬ÓÐ×î´óÖµ30£¬ËùÒÔ¢ÛÕýÈ·£®
¢ÜÓÉcos£¨2B+C£©+2sinAsinB=0µÃcos£¨B+¦Ð-A£©+2sinAsinB=0£¬ËùÒÔ-cos£¨B-A£©+2sinAsinB=0£¬¼´-cosAcosB+sinAsinB=0£¬ËùÒÔcos£¨A+B£©=0£¬¼´cosC=0£¬ËùÒÔc=90¡ã£¬¹Ê¡÷ABCÒ»¶¨ÊÇÖ±½ÇÈý½ÇÐΣ¬ËùÒԢܴíÎó£®
¢ÝÒòΪ||x-1|-|x+1||µÄ×î´óֵΪ2£¬ËùÒÔҪʹº¯Êý||x-1|-|x+1||¡Üaºã³ÉÁ¢£¬Ôòa¡Ý2£¬ËùÒÔ¢ÝÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸öÃüÌ⣺
¢ÙÔÚÈý½ÇÐÎABCÖУ¬ÈôA£¾BÔòsinA£¾sinB£»
¢ÚÈôÊýÁÐ{bn}µÄÇ°nÏîºÍSn=n2+2n+1£®ÔòÊýÁÐ{bn}´ÓµÚ¶þÏîÆð³ÉµÈ²îÊýÁУ»
¢ÛÒÑÖªSnÊǵȲîÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÈôS7£¾S8ÔòS9£¾S8£»
¢ÜÒÑÖªµÈ²îÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Èôa5=5a3Ôò
S9S5
=9£»
¢ÝÈô{an}ÊǵȱÈÊýÁУ¬ÇÒSn=3n+1+r£¬Ôòr=-1£»
ÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ£º
¢Ù¢Ú¢Ü
¢Ù¢Ú¢Ü
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸öÃüÌ⣺
¢ÙÈô4a=3£¬log45=b£¬Ôòlog4
95
=a2-b
£»
¢Úº¯Êýf(x)=0.51+2x-x2µÄµ¥µ÷µÝ¼õÇø¼äÊÇ[1£¬+¡Þ£©£»
¢Ûm¡Ý-1£¬Ôòº¯Êýy=lg£¨x2-2x-m£©µÄÖµÓòΪR£»
¢ÜÈôÓ³Éäf£ºA¡úBΪµ¥µ÷º¯Êý£¬Ôò¶ÔÓÚÈÎÒâb¡ÊB£¬ËüÖÁ¶àÓÐÒ»¸öÔ­Ïó£»
¢Ýº¯Êýy=exµÄͼÏóÓ뺯Êýy=f£¨x£©µÄͼÏó¹ØÓÚÖ±Ïßy=x¶Ô³Æ£¬Ôòf£¨e3£©=3£®
ÆäÖÐÕýÈ·µÄÃüÌâÊÇ
¢Û¢Ü¢Ý
¢Û¢Ü¢Ý
£¨°ÑÄãÈÏΪÕýÈ·µÄÃüÌâÐòºÅ¶¼ÌîÔÚºáÏßÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸öÃüÌ⣺ÆäÖÐÕýÈ·µÄÃüÌâÓÐ
¢Ú¢Û¢Ý
¢Ú¢Û¢Ý
£¨ÌîÐòºÅ£©£®
¢ÙÈô
a
b
=0£¬ÔòÒ»¶¨ÓÐ
a
¡Í
b
£»  ¢Ú?x£¬y¡ÊR£¬sin£¨x-y£©=sinx-siny£»
¢Û?a¡Ê£¨0£¬1£©¡È£¨1£¬+¡Þ£©£¬º¯Êýf£¨x£©=a1-2x+1¶¼ºã¹ý¶¨µã(
1
2
£¬2)
£»
¢Ü·½³Ìx2+y2+Dx+Ey+F=0±íʾԲµÄ³äÒªÌõ¼þÊÇD2+E2-4F¡Ý0£»
¢ÝÈô´æÔÚÓÐÐòʵÊý¶Ô£¨x£¬y£©£¬Ê¹µÃ
OP
=x
OA
+y
OB
£¬ÔòO£¬P£¬A£¬BËĵ㹲Ã森

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2010•ÉϺ£Ä£Ä⣩ÒÑÖªf£¨x£©ÔÚx¡Ê[a£¬b]ÉϵÄ×î´óֵΪM£¬×îСֵΪm£¬¸ø³öÏÂÁÐÎå¸öÃüÌ⣺
¢ÙÈô¶ÔÈκÎx¡Ê[a£¬b]¶¼ÓÐp¡Üf£¨x£©£¬ÔòpµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬m]£»
¢ÚÈô¶ÔÈκÎx¡Ê[a£¬b]¶¼ÓÐp¡Üf£¨x£©£¬ÔòpµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬M]£»
¢ÛÈô¹ØÓÚxµÄ·½³Ìp=f£¨x£©ÔÚÇø¼ä[a£¬b]ÉÏÓн⣬ÔòpµÄÈ¡Öµ·¶Î§ÊÇ[m£¬M]£»
¢ÜÈô¹ØÓÚxµÄ²»µÈʽp¡Üf£¨x£©ÔÚÇø¼ä[a£¬b]ÉÏÓн⣬ÔòpµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬m]£»
¢ÝÈô¹ØÓÚxµÄ²»µÈʽp¡Üf£¨x£©ÔÚÇø¼ä[a£¬b]ÉÏÓн⣬ÔòpµÄÈ¡Öµ·¶Î§ÊÇ£¨-¡Þ£¬M]£»
ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÎå¸öÃüÌ⣺ÆäÖÐÕýÈ·µÄÃüÌâÓÐ
¢Ú¢Û¢Ü
¢Ú¢Û¢Ü
£¨ÌîÐòºÅ£©£®
¢Ùº¯Êýy=sinx£¨x¡Ê[-¦Ð£¬¦Ð]£©µÄͼÏóÓëxÖáΧ³ÉµÄͼÐεÄÃæ»ýS=
¡Ò
¦Ð
-¦Ð
sinxdx
£»
¢Ú
C
r+1
n+1
=
C
r+1
n
+
C
r
n
£»
¢ÛÔÚ£¨a+b£©nµÄÕ¹¿ªÊ½ÖУ¬ÆæÊýÏîµÄ¶þÏîʽϵÊýÖ®ºÍµÈÓÚżÊýÏîµÄ¶þÏîʽϵÊýÖ®ºÍ£»
¢Üi+i2+i3+¡­i2012=0£»
¢ÝÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷²»µÈʽ
1
n+1
+
1
n+2
+
1
n+3
+¡­+
1
2n
£¾
13
24
£¬(n¡Ý2£¬n¡ÊN*)
µÄ¹ý³ÌÖУ¬ÓɼÙÉèn=k³ÉÁ¢ÍƵ½n=k+1³ÉÁ¢Ê±£¬Ö»ÐèÖ¤Ã÷
1
k+1
+
1
k+2
+
1
k+3
+¡­+
1
2k
+
1
2k+1
+
1
2(k+1)
£¾
13
24
¼´¿É£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸