精英家教网 > 高中数学 > 题目详情
11.同学们经过市场调查,得出了某种商品在2014年的价格y(单位:元)与时间t(单位:月的函数关系为:y=2+$\frac{{t}^{2}}{20-t}$(1≤t≤12),则10月份该商品价格上涨的速度是3元/月.

分析 根据导数的几何意义,求出函数的导数即可得到结论.

解答 解:∵y=2+$\frac{{t}^{2}}{20-t}$(1≤t≤12),
∴函数的导数y′=(2+$\frac{{t}^{2}}{20-t}$)′=($\frac{{t}^{2}}{20-t}$)′=$\frac{40t-{t}^{2}}{(20-t)^{2}}$,
由导数的几何意义可知10月份该商品价格上涨的速度为$\frac{40×10-1{0}^{2}}{1{0}^{2}}$=3,
故答案为:3.

点评 本题主要考查导数的计算,求出函数的导数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.某车间计划全年完成产值60万元,前3个季度完成43.45万元,如果10月份的产值是5万元,那么后两个月的月平均增长率应该是多少,才能超额完成年产值计划?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.长方体ABCD-A1B1C1D1中,AB=BC=2a,AA1=a,E和F分别是A1B1和BB1的中点,求:
(1)EF和AD1所成角的正弦值;
(2)AC1和B1C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=x3+ax2+(2a-3)x-1.
(1)若f(x)的单调减区间为(-1,1),则a的取值集合为0;
(2)若f(x)在区间(-1,1)内单凋递减,则a的取值集合为[0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{9}$C.$\frac{1}{6}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{{a}_{n}}$=(cosnθ,sinnθ),$\overrightarrow{{b}_{n}}$=(sinnθ,cosnθ)(n∈N*,θ∈R ),则|${\overrightarrow{a}}_{n}^{2}{•\overrightarrow{b}}_{n}^{3}$|=1,动点P($\overrightarrow{{a}_{n}}$•$\overrightarrow{{b}_{n}}$,|${\overrightarrow{a}}_{n}^{2}{•\overrightarrow{b}}_{n}^{3}$|)的轨迹是线段,方程为y=1(-1≤x≤1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知方程x+$\frac{{e}^{2}}{x}$+m=0有大于0的实数解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),A、B是其长轴的两个端点.
(1)过一个焦点F作垂直于长轴的弦PP′,求证:不论a、b如何变化,∠APB≠120°.
(2)如果椭圆上存在一个点Q,使∠AQB=120°,求C的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2-ax+a2,h(x)=ax+2,定义函数g(x)=$\left\{\begin{array}{l}{f(x)(f(x)≥h(x))}\\{h(x)(f(x)<h(x))}\end{array}\right.$.
(1)当a=1时,求g(x)的解析式;
(2)当|a-3|≤1+$\sqrt{2}$时,求函数g(x)在x∈[2,4]上的最小值.

查看答案和解析>>

同步练习册答案