【题目】已知对任意平面向量 =(x,y),把 绕其起点沿逆时针方向旋转θ角得到的向量 =(xcosθ﹣ysinθ,xsinθ+ycosθ),叫做把点B绕点A逆时针方向旋转θ得到点P.
(1)已知平面内点A(2,3),点B(2+2 ,1).把点B绕点A逆时针方向旋转 角得到点P,求点P的坐标.
(2)设平面内曲线C上的每一点绕坐标原点沿顺时针方向旋转 后得到的点的轨迹方程是曲线y= ,求原来曲线C的方程.
科目:高中数学 来源: 题型:
【题目】设离心率为 的椭圆 的左、右焦点为 , 点P是E上一点, , 内切圆的半径为 .
(1)求E的方程;
(2)矩形ABCD的两顶点C、D在直线上,A、B在椭圆E上,若矩形ABCD的周长为 , 求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设Ox、Oy是平面内相交成45°角的两条数轴, 、 分别是x轴、y轴正方向同向的单位向量,若向量 =x +y ,则把有序数对(x,y)叫做向量 在坐标系xOy中的坐标,在此坐标系下,假设 =(﹣2,2 ), =(2,0), =(5,﹣3 ),则下列命题不正确的是( )
A. =(1,0)
B.| |=2
C. ∥
D. ⊥
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面是菱形, , 平面, , , , 是中点.
(I)求证:直线平面.
(II)求证:直线平面.
(III)在上是否存在一点,使得二面角的大小为,若存在,确定的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若将函数y=cos 2x的图象向左平移 个单位长度,则平移后图象的对称轴为( )
A.x= ﹣ (k∈Z)
B.x= + (k∈Z)
C.x= ﹣ (k∈Z)
D.x= + (k∈Z)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在(0, )上的函数f(x),f′(x)是它的导函数,且恒有f(x)<f′(x)tanx成立,则( )
A.f( )> f( )
B.f(1)<2f( )sin1
C.f( )>f( )
D. f( )<f( )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,以A为圆心,AD为半径的圆交AC,AB于M,E.CE的延长线交⊙A于F,CM=2,AB=4.
(1)求⊙A的半径;
(2)求CE的长和△AFC的面积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若存在实常数和,使得函数和对其定义域上的任意实数分别满足: 和,则称直线为和的“隔离直线”.已知, 为自然对数的底数).
(1)求的极值;
(2)函数和是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com