分析 (1)求线面所成角,作A1O⊥AC于点O,A1O⊥平面ABC.∠A1BO为所求角,由此能求出侧棱BA1与平面ABC所成的角.
(2)以O为坐标原点建立坐标系,设出P(0,y,z),利用OP∥平面AB1C,求出P(0,y,z)坐标的值,进而求得二面角两个半平面的法向量$\overrightarrow{n_1}=(1,\sqrt{3},1)$,$\overrightarrow{n_2}=(\sqrt{3},0,0)$,通过法向量夹角求得二面角.
解答 解:(1)∵侧面A1ACC1⊥底面ABC,作A1O⊥AC于点O,
∴A1O⊥平面ABC.
∴∠A1BO为所求角,(2分)
又∠ABC=∠A1AC=60°,且各棱长都相等,
∴AO=1,$O{A_1}=OB=\sqrt{3}$,
∴∠A1BO=45°(4分)
(2)以O为坐标原点,建立如图所示的空间直角坐标系O-xyz,
则A(0,-1,0),$B(\sqrt{3},0,0)$,${A_1}(0,0,\sqrt{3})$,C(0,1,0),
∵$\overrightarrow{BD}=\overrightarrow{BA}+\overrightarrow{BC}$,而$\overrightarrow{BA}=({-\sqrt{3},-1,0}),\overrightarrow{BC}=({-\sqrt{3},1,0})$.
∴$\overrightarrow{BD}=(-2\sqrt{3},0,0)$
又$B(\sqrt{3},0,0)$,∴点D的坐标为$D(-\sqrt{3},0,0)$.
假设存在点P符合题意,则点P的坐标可设为P(0,y,z),∴$\overrightarrow{DP}=(\sqrt{3},y,z)$.
设面AB1C的法向量为$\overrightarrow{n}$=(x0,y0,z0),
∵$\overrightarrow{AC}=(0,2,0),\overrightarrow{A{B_1}}=(\sqrt{3},2,\sqrt{3})$
∴$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AC}=2{y}_{0}=0}\\{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=\sqrt{3}{x}_{0}+2{y}_{0}+\sqrt{3}{z}_{0}=0}\end{array}\right.$,取z0=1,得$\overrightarrow{n}$=(-1,0,1),
∵$\overrightarrow{DP}$∥面AB1C,∴$\overrightarrow{DP}⊥\overrightarrow{n}$,∴$\overrightarrow{DP}$$•\overrightarrow{n}$=-$\sqrt{3}+z=0$,∴z=$\sqrt{3}$,
又$\overrightarrow{AP}=(0,y+1,\sqrt{3}),\overrightarrow{A{A_1}}=(0,1,\sqrt{3})$,
由$\overrightarrow{AP}=λ\overrightarrow{A{A_1}}$,得$\left\{\begin{array}{l}y+1=λ\\ \sqrt{3}=λ\sqrt{3}\end{array}\right.$,∴$y=0∴P(0,0,\sqrt{3})$.
即P恰好为A1点.即是求二面角B-CA1-A,
设面BA1C的法向量为$\overrightarrow{m}$=(x1,y1,z1),
∵$\overrightarrow{{A_1}B}=(\sqrt{3},0,-\sqrt{3})$,$\overrightarrow{BC}=(-\sqrt{3},1,0)$,
∴$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{{A}_{1}B}=\sqrt{3}{x}_{1}-\sqrt{3}{z}_{1}=0}\\{\overrightarrow{m}•\overrightarrow{BC}=-\sqrt{3}{x}_{1}+{y}_{1}=0}\end{array}\right.$,令x1=1,得$\overrightarrow{m}$=(1,$\sqrt{3}$,1),
而面A1AC的法向量$\overrightarrow{p}$=($\sqrt{3}$,0,0),
∴cos<$\overrightarrow{m},\overrightarrow{p}$>=$\frac{\overrightarrow{m}•\overrightarrow{p}}{|\overrightarrow{m}|•|\overrightarrow{p}|}$=$\frac{\sqrt{3}}{\sqrt{5}•\sqrt{3}}$=$\frac{\sqrt{5}}{5}$,
∴二面角的余弦值为$\frac{{\sqrt{5}}}{5}$.
点评 本题考查线面角的求法,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
班级 | 1班 | 2班 | 3班 | 4班 |
人数 | 2 | 3 | 1 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com