精英家教网 > 高中数学 > 题目详情
定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.如果对于函数f(x)的所有上界中有一个最小的上界,就称其为函数f(x)的上确界.已知函数f(x)=1+a•(
1
2
)x+(
1
4
)x
g(x)=
1-m•2x
1+m•2x

(1)当a=1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由;
(2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(3)若m>0,求函数g(x)在[0,1]上的上确界T(m).
分析:(1)当a=1时,f(x)=1+(
1
2
)x+(
1
4
)x
,因为f(x)在(-∞,0)上递减,所以f(x)>f(0)=3,即f(x)在(-∞,0)的值域为(3,+∞).由此可知函数f(x)在(-∞,0)上不是有界函数. 
(2)由|f(x)|≤3在[1,+∞)上恒成立,设t=(
1
2
)x
,t∈(0,1],由-3≤f(x)≤3,得-3≤1+at+t2≤3,-(t+
4
t
)≤a≤
2
t
-t
在(0,1]上恒成立.由此入手,能够求出实数a的取值范围.
(3)g(x)=-1+
2
m•2x+1
,由m>0,x∈[0,1],知g(x)在[0,1]上递减,所以
1-2m
1+2m
≤g(x)≤
1-m
1+m
.由此进行分类讨论能够求出T(m)=
|
1-m
1+m
 m∈(0
2
2
]
|
1-2m
1+2m
 ,m∈[
2
2
,+∞)
解答:解:(1)当a=1时,f(x)=1+(
1
2
)x+(
1
4
)x
,因为f(x)在(-∞,0)上递减,
所以f(x)>f(0)=3,即f(x)在(-∞,0)的值域为(3,+∞)…(2分)
故不存在常数M>0,使|f(x)|≤M成立.
所以函数f(x)在(-∞,0)上不是有界函数.                          …(4分)
(2)由题意知,|f(x)|≤3在[0,+∞)上恒成立
t=(
1
2
)x
,t∈(0,1],由-3≤f(x)≤3,得-3≤1+at+t2≤3
-(t+
4
t
)≤a≤
2
t
-t
在(0,1]上恒成立…(6分)
h(t)=-t-
4
t
p(t)=
2
t
-t
,h(t)在(0,1]上递增;p(t)在(0,1]上递减,h(t)在(0,1]上的最大值为h(1)=-5;p(t)在(0,1]上的最小值为p(1)=1,…(9分)
所以实数a的取值范围为[-5,1].…(10分)
(3)g(x)=-1+
2
m•2x+1

∵m>0,x∈[0,1]∴g(x)在[0,1]上递减,
∴g(1)≤g(x)≤g(0)即
1-2m
1+2m
≤g(x)≤
1-m
1+m
…(12分)
|
1-m
1+m
|≥|
1-2m
1+2m
|
,即m∈(0,
2
2
]
时,|g(x)|≤|
1-m
1+m
|

|
1-m
1+m
|<|
1-2m
1+2m
|
,即m∈[
2
2
,+∞)
时,|g(x)|≤|
1-2m
1+2m
|

综上所述,T(m)=
|
1-m
1+m
 m∈(0
2
2
]
|
1-2m
1+2m
 ,m∈[
2
2
,+∞)
.                    …(16分)
点评:本题考查函数的应用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,正确理解新定义,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.
已知函数f(x)=1+a•(
1
2
x+(
1
4
x;g(x)=
1-m•x2
1+m•x2

(Ⅰ)当a=1时,求函数f(x)值域并说明函数f(x)在(-∞,0)上是否为有界函数?
(Ⅱ)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(Ⅲ)已知m>-1,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2
(1)当a=-1时,求函数f(x)在(-∞,0)上的值域,判断函数f(x)在(-∞,0)上是否为有界函数,并说明理由;
(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在D上的函数f(x),如果满足:对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界.已知函数f(x)=1+a•(
1
2
)x+(
1
4
)x
; g(x)=
1-m•x2
1+m•x2

(1)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a的取值范围;
(2)已知m>-1,函数g(x)在[0,1]上的上界是T(m),求T(m)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于定义在D上的函数f(x),若存在距离为d的两条直线y=kx+m1和y=kx+m2,使得对任意x∈D都有kx+m1≤f(x)≤kx+m2恒成立,则称函数f(x)(x∈D)有一个宽度为d的通道.给出下列函数:①f(x)=
1
x
,②f(x)=sinx,③f(x)=
x2-1
,其中在区间[1,+∞)上通道宽度可以为1的函数有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如右图所示,定义在D上的函数f(x),如果满足:对?x∈D,常数A,都有f(x)≥A成立,则称函数f(x)在D上有下界,其中A称为函数的下界.(提示:图中的常数A可以是正数,也可以是负数或零)
(1)试判断函数f(x)=x3+
48
x
在(0,+∞)上是否有下界?并说明理由;
(2)已知某质点的运动方程为S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一时刻该质点的瞬时速度是以A=
1
2
为下界的函数,求实数a的取值范围.

查看答案和解析>>

同步练习册答案