精英家教网 > 高中数学 > 题目详情
在四棱锥P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC与BD的交点M恰好是AC中点,又PA=AB=4,∠CDA=120°.

(1)求证:BD⊥PC;
(2)设E为PC的中点,点F在线段AB上,若直线EF∥平面PAD,求AF的长;
(3)求二面角A﹣PC﹣B的余弦值.
(1)证明过程详见解析;(2);(3).

试题分析:本题主要以四棱锥为几何背景考查线线垂直的判定和线面平行垂直的判定以及二面角的求法,可以运用传统几何法,也可以用空间向量法求解,突出考查空间想象能力和计算能力.第一问,先利用正三角形的性质得出垂直,再利用线面垂直的性质得出垂直,利用线面垂直的判定得垂直平面,从而得证;第二问,先利用中位线证出,再根据线面平行的判定定理证明平面,再根据已知条件得面面平行,所以得到,再转化边和角的值求出;第三问,先根据题意,建立空间直角坐标系,得出各个点坐标,计算出平面的法向量和平面的法向量,再利用夹角公式求出余弦值.
试题解析:(1)∵是正三角形,中点,
,即.
又∵平面,∴.
,∴平面.
.
(2)取中点连接平面.
又直线平面
所以平面平面

中点,



,得.
(3)分别以轴,轴,轴建立如图的空间直角坐标系,

为平面的法向量.

设平面的一个法向量为
,即
,得,则平面的一个法向量为
设二面角的大小为,则
所以二面角余弦值为
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,边长为4的正方形ABCD与矩形ABEF所在平面互相垂直,M,N分别为AE,BC的中点,AF=3.

(I)求证:DA⊥平面ABEF;
(Ⅱ)求证:MN∥平面CDFE;
(Ⅲ)在线段FE上是否存在一点P,使得AP⊥MN? 若存在,求出FP的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正方形所在平面与圆所在的平面相交于,线段为圆的弦,垂直于圆所在的平面,垂足为圆上异于的点,设正方形的边长为,且.

(1)求证:平面平面
(2)若异面直线所成的角为与底面所成角为,二面角所成角为,求证

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

正方形ADEF与梯形ABCD所在平面互相垂直,,点M在线段EC上且不与E,C重合.

(Ⅰ)当点M是EC中点时,求证:平面ADEF;
(Ⅱ)当平面BDM与平面ABF所成锐二面角的余弦值为时,求三棱锥M BDE的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是两条不同直线,是两个不同的平面,下列命题正确的是(     )
A.B.,则
C.,则D.,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知下列四个命题,其中真命题的序号是(    )
① 若一条直线垂直于一个平面内无数条直线,则这条直线与这个平面垂直;
② 若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;
③ 若一条直线平行一个平面,另一条直线垂直这个平面,则这两条直线垂直;
④ 若两条直线垂直,则过其中一条直线有唯一一个平面与另外一条直线垂直;
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知六棱锥的底面是正六边形,则下列结论正确的是(    )
A.
B.
C.直线
D.直线所成的角为45°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

为直线,是两个不同的平面,下列命题中正确的是(  )
A.若,,则B.若,,则
C.若,,则D.若,,则

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线m、n和平面α,在下列给定的四个结论中,m∥n的一个必要但不充分条件是(   )
A.m∥α,n∥αB.m⊥α,n⊥α
C.m∥α,n?αD.m、n与α所成的角相等

查看答案和解析>>

同步练习册答案