精英家教网 > 高中数学 > 题目详情
15.设函数$f(x)=ax-\frac{b}{x}$,曲线y=f(x)在点(2,f(2))处的切线方程为7x-4y-12=0,则a+b=4.

分析 求出函数f(x)的导数,可得切线的斜率和切点,由已知切线的方程可得a,b的方程组,解方程即可得到a,b的值.

解答 解:函数$f(x)=ax-\frac{b}{x}$,的导数为f′(x)=a+$\frac{b}{{x}^{2}}$,
可得y=f(x)在点(2,f(2))处的切线斜率为a+$\frac{b}{4}$,
切点为(2,2a-$\frac{b}{2}$),
由切线方程7x-4y-12=0,可得a+$\frac{b}{4}$=$\frac{7}{4}$,2a-$\frac{b}{2}$=$\frac{1}{2}$,
解得a=1,b=3.
∴a+b=4.
故答案为4.

点评 本题考查导数的运用:求切线的斜率,考查导数的几何意义,正确求导和运用直线方程是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.函数y=|x2-4x|的单调减区间为(-∞,0),(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设曲线y=x2在点(2,4)处的切线与曲线$y=\frac{1}{x}$(x>0)上点P处的切线垂直,则P的坐标为$(2,\;\;\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.假设关于某设备的使用年限x(年)和所支出的维修费用y(万元)有如下统计资料:
 x(年) 2 3 4 5 6
 y(万元) 2.2 3.8 5.56.5  7.0
若由资料知,y对x呈线性相关关系,且有如下参考数据:$\sum_{i=1}^5{{x_i}^2}=90,\sum_{i=1}^5{{x_i}{y_i}}=112.3$,则回归直线方程为(  )
A.y=1.23x+0.08B.y=1.25x-0.5C.y=1.28x-0.12D.y=1.24x+0.04

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\left\{\begin{array}{l}{{x}^{2}+6x+3,(x≤0)}\\{-3x+3,(0<x<1)}\\{-{x}^{2}+4x-3,(x≥1)}\end{array}\right.$
(1)画出函数的图象 (2)根据图象写出f(x)单调区间
(3)利用单调性定义证明f(x)在(-∞,-3]上减少的.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.复数2+i的实部与复数1-2i的虚部的和为(  )
A.0B.2-2iC.3-iD.1+3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知R上的连续函数g(x)满足:
①当x>0时,g'(x)>0恒成立(g'(x)为函数g(x)的导函数);
②对任意的x∈R都有g(x)=g(-x),又函数f(x)满足:对任意的x∈R,都有$f(\sqrt{3}+x)=f(x-\sqrt{3})$成立.
当$x∈[-\sqrt{3},\sqrt{3}]$时,f(x)=x3-3x.若关于x的不等式g[f(x)]≤g(a2-a+2)对$x∈[-\frac{3}{2}-2\sqrt{3},\frac{3}{2}+2\sqrt{3}]$恒成立,则a的取值范围是(  )
A.a∈RB.0≤a≤1
C.$-\frac{1}{2}-\frac{{3\sqrt{3}}}{4}≤a≤-\frac{1}{2}+\frac{{3\sqrt{3}}}{4}$D.a≤0或a≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知点$A({1,1}),B({1,-1}),C({\sqrt{2}cosθ,\sqrt{2}sinθ}),θ∈R$,O是坐标原点,
(1)若$|{\overrightarrow{BC}-\overrightarrow{BA}}|=\sqrt{2}$,求sin2θ的值;
(2)若实数m,n满足$m\overrightarrow{OA}+n\overrightarrow{OB}=\overrightarrow{OC},θ∈({0,\frac{π}{2}})$,求(m+3)2+n2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线C:$\frac{{x_{\;}^2}}{{a_{\;}^2}}-\frac{{y_{\;}^2}}{{b_{\;}^2}}=1(a>0,b>0)$的离心率为$\sqrt{10}$,则双曲线C的渐近线方程为(  )
A.y=±3xB.y=±2xC.$y=±\frac{1}{3}x$D.$y=±\frac{1}{2}x$

查看答案和解析>>

同步练习册答案