精英家教网 > 高中数学 > 题目详情
1.双曲线3y2-2x2=6的实轴长为$2\sqrt{2}$.

分析 化简双曲线的方程直接求解即可.

解答 解:双曲线3y2-2x2=6化为:$\frac{{y}^{2}}{2}-\frac{{x}^{2}}{3}=1$,
双曲线3y2-2x2=6的实轴长为:2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.

点评 本题考查双曲线的简单性质的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.如图所示的程序框图,输出的结果是15.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若方程2x=2-2x恰有一个实数根x0,则x0所在的区间是(  )
A.(0,$\frac{1}{4}$)B.($\frac{1}{4}$,$\frac{1}{2}$)C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在区间(0,+∞)上的函数f(x)>0,且f(x)<xf′(x)<2f(x)恒成立,其中f′(x)为f(x)的导函数,则(  )
A.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$B.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$C.$\frac{1}{2}$<$\frac{f(1)}{f(2)}$<1D.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在正方体ABCD-A1B1C1D1中,棱长为L,G、E、F分别为AA1、AB、BC的中点,求平面GEF的一个法向量.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直线y=kx-k及抛物线y2=2px(p≥0),则(  )
A.直线与抛物线有一个公共点B.直线与抛物线有两个公共点
C.直线与抛物线有一个或两个公共点D.直线与抛物线可能没有公共点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知圆C:(x-1)2+(y+1)2=12,直线l:kx-y+1=0.
(1)求证:对k∈R,直线l与圆C总有两个不同的交点;
(2)若直线l被圆C截得的弦长最小时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若$\overrightarrow{OD}$+$\overrightarrow{OE}$=$\overrightarrow{OM}$,试着判断下列结论是否正确.
(1)$\overrightarrow{OM}$-$\overrightarrow{OE}$=$\overrightarrow{OD}$;
(2)$\overrightarrow{OM}$+$\overrightarrow{DO}$=$\overrightarrow{OE}$;
(3)$\overrightarrow{OD}$+$\overrightarrow{EO}$=$\overrightarrow{OM}$;
(4)$\overrightarrow{DO}$+$\overrightarrow{EO}$=$\overrightarrow{MO}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数g(x)=x3+x,若g(3a-2)+g(a+4)>0,则实数a的取值范围是a>-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案