(1)首先搞清楚什么样的函数具有“
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026518283.png)
和性质”.本小题只要证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026908605.png)
与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026924648.png)
互为反函数,即可说明y=f(x)满足“1和性质”.
(2)设函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026565669.png)
满足“2和性质”,再求出其反函数,根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026955766.png)
互为反函数,可求出k,b 的值.进而确定F(x),同时可研究其单调性.利用其单调性解
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230265961186.png)
再转化为不等式恒成立问题解决.
(1)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026706937.png)
的反函数是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027018657.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027033500.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027096913.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232230271111001.png)
其反函数为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027298789.png)
, 故函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026706937.png)
不满足“1和性质”;
......6分
(2)设函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026565669.png)
满足“2和性质”,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027517427.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027532984.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027548901.png)
,而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027688946.png)
,得反函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027720765.png)
由“2和性质”定义可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027735613.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027860636.png)
对
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027891433.png)
恒成立,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027907635.png)
即函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027922611.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223027891433.png)
,在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028110516.png)
上递减,......9分
所以假设存在实数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026518283.png)
满足
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028156781.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028172713.png)
,即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028188830.png)
对任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026768634.png)
恒成立,它等价于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028234963.png)
在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028266545.png)
上恒成立.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028297645.png)
,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028266545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028328256.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028359579.png)
,易得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028484393.png)
.而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028687539.png)
知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028702395.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223028718370.png)
.综合以上有当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026721438.png)
使得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026737999.png)
对任意的
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823223026768634.png)
恒成立.......13分