【题目】设函数f(x)满足2x2f(x)+x3f′(x)=ex , f(2)= ,则x∈[2,+∞)时,f(x)( )
A.有最大值
B.有最小值
C.有最大值
D.有最小值
【答案】B
【解析】解:由2x2f(x)+x3f'(x)=ex , 当x>0时,
故此等式可化为:f'(x)= ,且当x=2时,f(2)= ,
f'(2)= =0,
令g(x)=e2﹣2x2f(x),g(2)=0,
求导g′(x)=e2﹣2[x2f′(x)+2xf(x)]=e2﹣ = (x﹣2),
当x∈[2,+∞)时,g′(x)>0,
则g(x)在x∈[2,+∞)上单调递增,
g(z)的最小值为g(2)=0,
则f'(x)≥0恒成立,
∴f(x)的最小值f(2)= ,
故选:B.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.
科目:高中数学 来源: 题型:
【题目】某种产品的广告费支出与销售额 (单位:万元)具有较强的相关性,且两者之间有如下对应数据:
2 | 4 | 5 | 6 | 8 | |
28 | 36 | 52 | 56 | 78 |
(1)求关于的线性回归方程;
(2)根据(1)中的线性回归方程,当广告费支出为10万元时,预测销售额是多少?
参考数据: ,,。
附:回归方程中斜率和截距的最小二乘估计公式分别为:
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知两直线l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分别满足下列条件的a,b的值.
(1)直线l1过点(-3,-1),并且直线l1与l2垂直;
(2)直线l1与直线l2平行,并且坐标原点到l1,l2的距离相等.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中心在坐标原点的椭圆的长轴的一个端点是抛物线的焦点,且椭圆的离心率是.
(1)求椭圆的方程;
(2)过点的动直线与椭圆相交于两点.若线段的中点的横坐标是,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正三棱锥D﹣ABC侧棱两两垂直,E为棱AD中点,平面α过点A,且α∥平面EBC,α∩平面ABC=m,α∩平面ACD=n,则m,n所成角的余弦值是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时,(万元).当年产量不小于80千件时(万元).每件商品售价为0.05万元.通过分析,该工厂生产的商品能全部售完.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com