精英家教网 > 高中数学 > 题目详情
7.如图四棱柱ABCD-A1B1C1D1中,AA1⊥面ABCD,四边形ABCD为梯形,AD∥BC,且AD=3BC,过A1,C,D三点的平面记为α,BB1与α的交点为Q,则以下四个结论:
①QC∥A1D②B1Q=2QB;③直线A1B与直线CD相交;④四棱柱被平面α分成的上下两部分的体积相等.其中正确的有①②.

分析 ①由于平面BCB1C1∥平面ADD1A1,即可判断出正误;
②如图所示,设A1Q∩DC=E点,则E点也在AB的延长线上,利用A1B1∥AB,BC∥AD,可得$\frac{{B}_{1}Q}{BQ}$=$\frac{{A}_{1}{B}_{1}}{BE}$=$\frac{AB}{BE}$=$\frac{AD-BC}{BC}$=$\frac{2}{1}$,即可判断出正误;
③直线A1B与直线CD是异面直线,即可判断出正误;
④如图所示,设S1=${S}_{BC{C}_{1}{B}_{1}}$=BC•BB1.可得:S△BCQ=$\frac{1}{6}$S1,${S}_{△AD{A}_{1}}$=$\frac{3}{2}$S1.分别计算出${V}_{BCQ-AD{A}_{1}}$=$\frac{13}{18}{S}_{1}h$,(h为平面BCC1B1与平面ADD1A1之间的距离),${V}_{BC{C}_{1}{B}_{1}-AD{D}_{1}{A}_{1}}$=$\frac{13}{3}{S}_{1}h$,即可判断出正误.

解答 解:①∵平面BCB1C1∥平面ADD1A1,平面BCB1C1∩α=CQ,α∥平面ADD1A1=A1D,∴QC∥A1D,正确;
②如图所示,设A1Q∩DC=E点,则E点也在AB的延长线上,∵A1B1∥AB,BC∥AD,∴$\frac{{B}_{1}Q}{BQ}$=$\frac{{A}_{1}{B}_{1}}{BE}$=$\frac{AB}{BE}$=$\frac{AD-BC}{BC}$=$\frac{2}{1}$,∴B1Q=2QB,正确;
③直线A1B与直线CD是异面直线,不可能相交,因此不正确;
④如图所示,设S1=${S}_{BC{C}_{1}{B}_{1}}$=BC•BB1.S△BCQ=$\frac{1}{2}BQ•BC$=$\frac{1}{6}$S1,${S}_{△AD{A}_{1}}$=$\frac{1}{2}AD•A{A}_{1}$=$\frac{1}{2}×3BC•$3QB=9×$\frac{1}{6}{S}_{1}$=$\frac{3}{2}$S1
${V}_{BCQ-AD{A}_{1}}$=$\frac{1}{3}(\frac{1}{6}{S}_{1}+\sqrt{\frac{1}{6}{S}_{1}•\frac{3}{2}{S}_{1}}+\frac{3}{2}{S}_{1})$•H=$\frac{13}{18}{S}_{1}h$,(h为平面BCC1B1与平面ADD1A1之间的距离).${V}_{BC{C}_{1}{B}_{1}-AD{D}_{1}{A}_{1}}$=$\frac{1}{3}({S}_{1}+\sqrt{{S}_{1}•9{S}_{1}}+9{S}_{1})$•h=$\frac{13}{3}{S}_{1}h$,因此四棱柱被平面α分成的上下两部分的体积不相等,不正确.
综上可得:只有①②正确.
故答案为:①②.

点评 本题考查了空间位置关系及其判定、体积计算公式、平行线的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.圆ρ=10$\sqrt{3}$cosθ-10sinθ的圆心极坐标是(10,-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线$l:\left\{\begin{array}{l}x=1-\frac{{\sqrt{2}}}{2}t\\ y=2+\frac{{\sqrt{2}}}{2}t\end{array}\right.,(t为参数)$与圆$C:\left\{\begin{array}{l}x=1+\sqrt{2}cosθ\\ y=1+\sqrt{2}sinθ\end{array}\right.,(θ为参数)$,
(1)求证:直线l与圆C相交;
(2)设直线l与圆C相交于A、B两点,又已知点P(m,0),m∈R,求||PA|-|PB||的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前项n和为Sn,若对于任意的正整数n都有Sn=2an-2n.
(1)设bn=an+2,求证:数列{bn}是等比数列,
(2)求证:${a_n}{a_{n+2}}≤{a_{n+1}}^2$
(3)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知正数x,y满足x+2y=2,则$\frac{1}{y}$+$\frac{8}{x}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知圆(x-1)2+(y+1)2=4关于直线mx+y-2m=0对称,则m的值为(  )
A.1B.-1C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知三点A(2,2),B(3,1),C(-1,-1),则过点A的直线l与线段BC有公共点时(公共点包含公共点),直线l的斜率kl的取值范围是(  )
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知{an}为等比数列,其前n项和为Sn,且${S_n}={2^n}+a$(n∈N*).
(1)求a的值及数列{an}的通项公式;
(2)设bn=log4an+1,设{bn}的前n项和Sn,求不等式2Sn≤5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图,在△ABC和△DBE中,$\frac{AB}{DB}=\frac{BC}{BE}=\frac{AC}{DE}=\frac{5}{3}$,若△ABC与△DBE的周长之差为10cm,则△ABC的周长为25cm.

查看答案和解析>>

同步练习册答案