精英家教网 > 高中数学 > 题目详情
8.在Rt△AOB中,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,|$\overrightarrow{OA}$|=$\sqrt{5}$,|$\overrightarrow{OB}$|=2$\sqrt{5}$,AB边上的高为OD,D在AB上,点E位于线段OD上,若$\overrightarrow{OE}$•$\overrightarrow{EA}$=$\frac{3}{4}$,则向量$\overrightarrow{EA}$在向量$\overrightarrow{OD}$上的投影为(  )
A.$\frac{1}{2}$或$\frac{3}{2}$B.1C.1或$\frac{1}{2}$D.$\frac{3}{2}$

分析 根据题意画出图形,结合图形求出AB、OD的长,再根据数量积与投影的定义,列出方程求出结果.

解答 解:如图所示,
∵$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,∴$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,即OA⊥OB,
∴AB=$\sqrt{{OA}^{2}{+OB}^{2}}$=5;
又OD为AB边上的高,
∴OD⊥AB,
∴OD=$\frac{OA×OB}{AB}$=$\frac{\sqrt{5}×2\sqrt{5}}{5}$=2,
∴$\overrightarrow{OE}$•$\overrightarrow{EA}$=|$\overrightarrow{OE}$|•|$\overrightarrow{EA}$|cos∠AED=|$\overrightarrow{OE}$|•|$\overrightarrow{ED}$|=$\frac{3}{4}$;
设|$\overrightarrow{ED}$|为x,则x(2-x)=$\frac{3}{4}$,
解得x=$\frac{1}{2}$或x=$\frac{3}{2}$,
∴向量$\overrightarrow{EA}$在向量$\overrightarrow{OD}$上的投影为|$\overrightarrow{ED}$|=$\frac{1}{2}$或$\frac{3}{2}$.
故选:A.

点评 本题主要考查平面向量的数量积与向量投影的定义和应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知抛物线C1:y=ax2(a>0)的焦点F也是椭圆C2:$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{{b}^{2}}$=1(b>0)的一个焦点,点M,P($\frac{3}{2}$,1)分别为曲线C1,C2上的点,则|MP|+|MF|的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若动点A(x1,y1)、B(x2,y2)分别在直线l1:2x-y+11=0和l2:2x-y-1=0上移动,则AB的中点M所在的直线方程为(  )
A.2x+y-5=0B.2x+y+5=0C.2x-y-5=0D.2x-y+5=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)已知双曲线的焦点在y轴,实轴长与虚轴长之比为2:3,且经过P($\sqrt{6}$,2),求双曲线方程.
(2)已知焦点在x轴上,离心率为$\frac{5}{3}$,且经过点M(-3,2$\sqrt{3}$)的双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图所示为某城市去年风向频率图,图中A点表示该城市去年有的天数吹北风,点表示该城B市去年有10%的天数吹东南风,下面叙述不正确的是(  )
A.去年吹西北风和吹东风的频率接近B.去年几乎不吹西风
C.去年吹东风的天数超过100天D.去年吹西南风的频率为15%左右

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.表面积为20π的球面上有四点S、A、B、C,且△ABC是边长为2$\sqrt{3}$的等边三角形,若平面SAB⊥平面ABC,则三棱锥S-ABC体积的最大值是3$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.“m=-1”是“直线l1:mx-2y-1=0和直线l2:x-(m-1)y+2=0相互平行”的充分不必要条件.(用“充分不必要”,“必要不充分条件”,“充要”,“既不充分也不必要”填空)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个几何体的三视图如图所示,其中正视图是边长为2的等边三角形,俯视图为正六边形,则该几何体的体积是(  )
A.$\frac{1}{2}$B.1C.2D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.现在人们都注重锻炼身体,骑车或步行上下班的人越来越多,某公司甲、乙两人每天可采用步行,骑车,开车三种方式上下班.步行到公司所用时间为1小时,骑车到公司所用时间为0.5小时,开车到公司所用时间为0.1小时.甲、乙两人上下班方式互不影响.设甲、乙步行的概率分别为$\frac{1}{4},\frac{1}{2}$;骑车概率分别为$\frac{1}{2},\frac{1}{4}$.
(1)求甲、乙两人到公司所用时间相同的概率;
(2)设甲、乙两人到公司所用时间和为随机变量ξ,求ξ的分布列及数学期望E(ξ).

查看答案和解析>>

同步练习册答案