精英家教网 > 高中数学 > 题目详情
.(本小题满分12分)
已知以函数f(x)=mx3-x的图象上一点N(1,n)为切点的切线倾斜角为.
(1)求m、n的值;
(2)是否存在最小的正整数k,使得不等式f(x)≤k-1995,对于x∈[-1,3]恒成立?若存在,求出最小的正整数k,否则请说明理由.
解:(1)f′(x)=3mx2-1,
f′(1)=tan=1,
∴3m-1=1,∴m=.
从而由f(1)=-1=n,得n=-
∴m=,n=-.
(2)存在.
f′(x)=2x2-1=2(x+)(x-),
令f′(x)=0得x=±.
在[-1,3]中,当x∈[-1,-]时,
f′(x)>0,f(x)为增函数,
当x∈[-]时,
f′(x)<0,f(x)为减函数,
此时f(x)在x=-时取得极大值.
当x∈[,3]时,
此时f′(x)>0,f(x)为增函数,
比较f(-),f(3)知f(x)max=f(3)=15.
∴由f(x)≤k-1995,知15≤k-1995,
∴k≥2010,即存在最小的正整数k=2010,
使不等式在x∈[-1,3]上恒成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数
(Ⅰ)求函数的定义域;
(Ⅱ)求函数的单调区间;
(Ⅲ)当时,若存在使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数时,都取得极值。
(1)求的值;
(2)若,求的单调区间和极值;
(3)若对都有恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知,函数.
(1)当时讨论函数的单调性;
(2)当取何值时,取最小值,证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)设,其中
(1)当时,求的极值点;
(2)若为R上的单调函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分) 已知三次函数=为实数,=1,
曲线y=在点(1,)处切线的斜率为-6。
(1)求函数的解析式;
(2)求函数在(-2,2)上的最大值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,若,则=
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(x)=x2+2x·f′(1),则f′(0)=_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


                
         

查看答案和解析>>

同步练习册答案