如图所示,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC,且分别交AC、SC于D、E.又SA=AB,SB=SC.求以BD为棱,以BDE与BDC为面的二面角的度数.
解法一:由于SB=BC,且E是SC中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.又已知SC⊥DE,BE∩DE=E,
∴SC⊥平面BDE,
∴SC⊥BD,
又∵SA⊥底面ABC,BD在底面ABC上,
∴SA⊥BD.
而SA∩SC=S,
所以BD⊥平面SAC.
∵DE=平面SAC∩平面BDE,DC=平面SAC∩平面BDC,
∴BD⊥DE,BD⊥DC.
∴∠EDC是所求二面角的平面角.
∵SA⊥底面ABC,
∴SA⊥AB,SA⊥AC.
设SA=a,则AB=a,BC=SB=a.
又AB⊥BC,所以AC=a.在RtΔSAC中
tan∠ACS==,所以∠ACS=30°.
又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.
解法二:由于SB=BC,且E是SC的中点,因此BE是等腰ΔSBC的底边SC的中线,所以SC⊥BE.又已知SC⊥DE,BE∩DE=E.
∴SC⊥平面BDE,SC⊥BD.
由于SA⊥底面ABC,且A是垂足,所以,AC是SC在平面ABC上的射影,由三垂线定理的逆定理得BD⊥AC;又E∈SC,AC是SC在平面内的射影,所以E在平面ABC内的射影在AC上,由于D∈AC,所以DE在平面ABC内的射影在AC上,根据三垂线定理得BD⊥DE.
∵DE平面BDE,DC平面BDC.
∴∠EDC是所求二面角的平面角.
以下解法同解法一.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:训练必修二数学人教A版 人教A版 题型:047
如图所示,在三棱锥S-ABC中,SA⊥底面ABC,底面ABC为正三角形,AH⊥面SBC.求证:H不可能是△SBC的垂心.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图所示,在三棱锥S—ABC中,SA⊥底面ABC,AB⊥BC,DE垂直平分SC,且分别交AC、SC于D、E.又SA=AB,SB=SC.求以BD为棱,以BDE与BDC为面的二面角的度数.
查看答案和解析>>
科目:高中数学 来源:不详 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:
(1)证明:AC⊥SB.
(2)求二面角S—CM—A的大小.
(3)求点B到平面SCM的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com