精英家教网 > 高中数学 > 题目详情
14.已知函数$f(x)=[x+\frac{3}{2}]$(取整函数),$g(x)=\left\{{\begin{array}{l}{1,x∈Q}\\{0,x∉Q}\end{array}}\right.$,则f(g(π))的值为(  )
A.1B.0C.2D.π

分析 先求出g(π)=0,从而f(g(π))=f(0),由此能求出结果.

解答 解:∵函数$f(x)=[x+\frac{3}{2}]$(取整函数),$g(x)=\left\{{\begin{array}{l}{1,x∈Q}\\{0,x∉Q}\end{array}}\right.$,
∴g(π)=0,
f(g(π))=f(0)=[$\frac{3}{2}$]=1.
故选:A.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+2sinθ•x-1,x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$].
(1)当sinθ=-$\frac{1}{2}$时,求f(x)的最大值和最小值;
(2)若f(x)在x∈[-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$]上是单调函数,且θ∈[0,2π),求θ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若对任意的x,y∈[-1,1],且x+y≠0,都有(x+y)•[f(x)+f(y)]>0.
(1)判断f(x)的单调性,并加以证明;
(2)解不等式$f({x+\frac{1}{2}})+f({2x-1})<0$;
(3)若f(x)≤m2-2am+2对任意的x∈[-1,1],m∈[1,2]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x2+bx-alnx.
(1)当a>0时,函数f(x)是否存在极值?判断并证明你的结论;
(2)若x=2是函数f(x)的极值点,1和x0是函数f(x)的两个不同零点,且x0∈(n,n+1),求自然数n的值;
(3)若对任意b∈[-2,-1],都存在x∈(1,e),使得f(x)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数在区间(-∞,0)上是增函数的是(  )
A.y=-$\frac{1}{x}$B.y=2x2-x-1C.y=|x|D.y=-2x-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量$\overrightarrow a=(cosα,2sinα),\overrightarrow b=(2cosβ,-sinβ)$,$α、β∈[0,\frac{π}{2}]$.
(1)若$\overrightarrow a•\overrightarrow b=-\frac{10}{13}$,$sinβ=\frac{4}{5}$,求sin(α+2β)的值;
(2)若$\overrightarrow c=(0,1)$,求$|{\overrightarrow a-\overrightarrow c}|$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知数列{an}满足条件$\frac{1}{3}{a_1}+\frac{1}{3^2}{a_2}+\frac{1}{3^3}{a_3}+…+\frac{1}{3^n}{a_n}=3n+1$,则数列{an}的通项公式为(  )
A.${a_n}={3^n}$B.${a_n}={3^{n+1}}$
C.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^n},n≥2\end{array}\right.$D.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^{n+1}},n≥2\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow m=(sinx,-1)$,向量$\overrightarrow n=(\sqrt{3}cosx,-\frac{1}{2})$,函数$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(Ⅰ)求f(x)单调递减区间;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,$a=2\sqrt{3}$,c=4,且f(A)恰是f(x)在$[{0,\frac{π}{2}}]$上的最大值,求A,b,和△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN,若AB=14,AC=19,则MN的长为(  )
A.2B.2.5C.3D.3.5

查看答案和解析>>

同步练习册答案