精英家教网 > 高中数学 > 题目详情
8.设A,B是球O的球面上两点,∠AOB=$\frac{π}{3}$,C是球面上的动点,若四面体OABC的体积V的最大值为$\frac{9\sqrt{3}}{4}$,则此时球的表面积为36π.

分析 当点C位于垂直于面AOB时,三棱锥O-ABC的体积最大,利用三棱锥O-ABC体积的最大值为$\frac{9\sqrt{3}}{4}$,求出半径,即可求出球O的体积

解答 解:如图所示,当点C位于垂直于面AOB时,三棱锥O-ABC的体积最大,
设球O的半径为R,此时VO-ABC=VC-AOB=$\frac{1}{3}×\frac{1}{2}\\;×{R}^{2}×sin6{0}^{0}×R$×R2×sin60°×R=$\frac{9\sqrt{3}}{4}$,
故R=3,则球O的表面积为4πR2=36π,
故答案为:36π.

点评 本题考查球的半径,考查体积的计算,确定点C位于垂直于面AOB时,三棱锥O-ABC的体积最大是关键.属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2sin(ωx),其中常数ω>0
(1)若y=f(x)在$[{-\frac{π}{4},\frac{2π}{3}}]$上单调递增,求ω的取值范围;
(2)令ω=2,将函数y=f(x)的图象向左平移$\frac{π}{6}$个单位,再向上平移1个单位,得到函数y=g(x)的图象,区间[a,b](a,b∈R且a<b)满足,y=g(x)在[a,b]上恰有30个零点,求b-a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知i为虚数单位,若复数z=$\frac{1-ai}{1+i}$(a∈R)的实部为-3,则|z|=(  )
A.$\sqrt{10}$B.2$\sqrt{3}$C.$\sqrt{13}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设曲线y=xn+1(n∈N*)在点(1,1)处的切线与x轴的交点的横坐标为xn,则log2017x1+log2017x2+…+log2017x2016的值为(  )
A.-log20172016B.-1C.log20172016-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{{e}_{1}}$与$\overrightarrow{{e}_{2}}$不共线,且向量$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$+m$\overrightarrow{{e}_{2}}$,$\overrightarrow{AC}$=n$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,若A,B,C三点共线,则实数m,n(  )
A.mn=1B.mn=-1C.m+n=1D.m+n=-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知复数z满足(1+i)z=2i,则|z|=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若集合A={x|x2≤4},B={x|x≥0}.则A∩B=(  )
A.{x|0≤x≤2}B.{x|x≥-2}C.{0,1,2}D.{1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在平面内的动点(x,y)满足不等式$\left\{\begin{array}{l}{x+y-3≤0}\\{x-y+1≥0}\end{array}\right.$,则z=2x+y的取值范围是(  )
A.(-∞,+∞)B.(-∞,4]C.[4,+∞)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,四棱锥P-ABCD中,平面PAD⊥平面ABCD,△PAD是正三角形,底面ABCD是直角梯形,AB∥CD,CD⊥AD,CD=2AB=2AD=2,M为PC的中点.
(Ⅰ)求证:BM∥平面PAD;
(Ⅱ)求证:直线BM⊥平面PDC;
(Ⅲ)求直线PD与平面BDM所成角的正弦值.

查看答案和解析>>

同步练习册答案