精英家教网 > 高中数学 > 题目详情
在(
x
2
-
1
3x
n的展开式中,只有第5项的二项式系数最大,则展开式的常数项为(  )
A、-7B、7C、-28D、28
分析:利用二项展开式的中间项的二项式系数最大,列出方程求出n;利用二项展开式的通项公式求出通项,令x的指数为0求出常数项.
解答:解:依题意,
n
2
+1=5,
∴n=8.
二项式为(
x
2
-
1
3x
8,其展开式的通项Tk+1=(-1)k(
1
2
)
8-k
C
k
8
x8-
4k
3

8-
4k
3
=0
解得k=6
故常数项为C86
x
2
2(-
1
3x
6=7.
故选B
点评:本题考查二项式系数的性质、利用二项展开式的通项公式解决二项展开式的特定项问题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)在(1+x)n的展开式中,若第3项与第6项系数相等,则n等于多少?
(2)(x
x
+
1
3x
)n
的展开式奇数项的二项式系数之和为128,则求展开式中二项式系数最大的项.
(3)已知(x2-
1
x
)n
展开式中的二项式系数的和比(3a+2b)7展开式的二项式系数的和大128,求(x2-
1
x
)n
展开式中的系数最大的项和系数最小的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a2x+1
3x-1
(a∈N)
,方程f(x)=-2x+7有两个根x1,x2,且x1<1<x2<3.
(1)求自然数a的值及f(x)的解析式;
(2)记等差数列{an}和等差数列{bn}的前n项和分别为Sn和Tn,且
Sn
Tn
=f(n),(n∈N*)
,设g(n)=
an
bn
,求g(n)的解析式及g(n)的最大值;
(3)在(2)小题的条件下,若a1=10,写出数列{an}和{bn}的通项,并探究在数列{an}和{bn}中是否存在相等的项?若有,求这些相等项从小到大排列所成数列{cn}的通项公式;若没有,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(1)在(1+x)n的展开式中,若第3项与第6项系数相等,则n等于多少?
(2)(x
x
+
1
3x
)n
的展开式奇数项的二项式系数之和为128,则求展开式中二项式系数最大的项.
(3)已知(x2-
1
x
)n
展开式中的二项式系数的和比(3a+2b)7展开式的二项式系数的和大128,求(x2-
1
x
)n
展开式中的系数最大的项和系数最小的项.

查看答案和解析>>

科目:高中数学 来源:衢州模拟 题型:单选题

在(
x
2
-
1
3x
n的展开式中,只有第5项的二项式系数最大,则展开式的常数项为(  )
A.-7B.7C.-28D.28

查看答案和解析>>

同步练习册答案