(本小题满分13分)
如图,已知四棱锥P-ABCD的底面是菱形,∠BCD=60°,点E是BC边的中点,AC与DE交于点O,PO⊥平面ABCD.
(Ⅰ)求证:PD⊥BC;
(Ⅱ)若AB=6,PC=6,求二面角P-AD-C的大小;
(Ⅲ)在(Ⅱ)的条件下,求异面直线PB与DE所成角的余弦值.
解:解法一:(Ⅰ)在菱形ABCD中,连接DB,则△BCD是等边三角形.
∵点E是BC边的中点
∴DE⊥BC.
∵PO⊥平面ABCD,
∴OD是斜线PD在底面ABCD内的射影.
∴PD⊥BC. (4分)
(Ⅱ)由(Ⅰ)知DE⊥BC,
菱形ABCD中,AD∥BC,
∴DE⊥AD.
又∵PO⊥平面ABCD,DE是PD在平面ABCD的射影,
∴PD⊥AD.
∴∠PDO为二面角P-AD-C的平面角.
在菱形ABCD中,AD⊥DE,由(1)知,△BCD为等边三角形,
∵点E是BC边的中点,AC与BD互相平分,
∴点O是△BCD重心.
∵AB=6,
又∵在等边△BDC中,
DO=DE=·BC=×6=6.
∴OC=OD=6.
∵PC=6,∴PO=6.
∴在Rt△POD中,tan∠PDO===1.
∴∠PDO=.
∴二面角P-AD-C的大小为. (9分)
(Ⅲ)取AD中点H,连接HB,HP.
则HB∥DE.
∴HB与PB所成角即是DE与PB所成角.
连接OH,OB.
∵PO⊥平面ABCD,OH,OB⊂平面ABCD,
∴PO⊥OH,PO⊥OB.
在Rt△DOH中,HD=3,OD=6,
∴OH=3.
在Rt△PHO中,PH==.
在Rt△POB中,OB=OC=6,PB==6.
由(Ⅱ)可知DE=HB=9.
设HB与PB所成角为α,
则cosα==.
∴异面直线PB、DE所成角的余弦值为. (13分)
解法二:(Ⅰ)同解法一; (4分)
(Ⅱ)过点O作AD平行线交AB于F,以点O为坐标原点,建立如图的坐标系.
∴A(6,-6,0),B(3,3,0),C(-3,3,0),
D(0,-6,0),P(0,0,6).
∴=(-6,0,0),=(0,-6,-6).
设平面PAD的一个法向量为s=(a,m,n).
则
即
∴
不妨取s=(0,-1,1).
∵=(0,0,6)是平面ADC的一个法向量,
∴cos〈s,〉==.
∴二面角P-AD-C的大小为. (9分)
(Ⅲ)由已知,可得点E(0,3,0).
∴=(3,3,-6),=(0,9,0).
∴cos〈,〉==.
即异面直线PB、DE所成角的余弦值为.
【解析】略
科目:高中数学 来源:2015届江西省高一第二次月考数学试卷(解析版) 题型:解答题
(本小题满分13分)已知函数.
(1)求函数的最小正周期和最大值;
(2)在给出的直角坐标系中,画出函数在区间上的图象.
(3)设0<x<,且方程有两个不同的实数根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年福建省高三年级八月份月考试卷理科数学 题型:解答题
(本小题满分13分)已知定义域为的函数是奇函数.
(1)求的值;(2)判断函数的单调性;
(3)若对任意的,不等式恒成立,求k的取值范围.
查看答案和解析>>
科目:高中数学 来源:河南省09-10学年高二下学期期末数学试题(理科) 题型:解答题
(本小题满分13分)如图,正三棱柱的所有棱长都为2,为的中点。
(Ⅰ)求证:∥平面;
(Ⅱ)求异面直线与所成的角。www.7caiedu.cn
[来源:KS5
U.COM
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三5月月考调理科数学 题型:解答题
(本小题满分13分)
已知为锐角,且,函数,数列{}的首项.
(1) 求函数的表达式;
(2)在中,若A=2,,BC=2,求的面积
(3) 求数列的前项和
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com