精英家教网 > 高中数学 > 题目详情
8.已知角α终边上有一点P(x,1),且cosα=-$\frac{1}{2}$,则tanα=-$\sqrt{3}$.

分析 利用任意角的三角函数的定义,求得tanα的值.

解答 解:∵角α终边上有一点P(x,1),且cosα=-$\frac{1}{2}$=$\frac{x}{\sqrt{{x}^{2}+1}}$,∴x=-$\frac{\sqrt{3}}{3}$,∴tanα=$\frac{1}{x}$=-$\sqrt{3}$,
故答案为:-$\sqrt{3}$.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.设α:x≤-5或x≥1,β:2m-3≤x≤2m+1,若α是β的必要条件,求实数m的取值范围m≤-3或m≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设集合M=(x∈N*||x|≤2},N={2,6},则M∩N=(  )
A.{1,2,2,6}B.{1,2,6}C.{2}D.{1,6}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=-x2-2x,g(x)=$\left\{\begin{array}{l}{lnx,x>0}\\{x+1,x≤0}\end{array}\right.$.
(1)求g[f(-1)]的值;
(2)试判断方程f(x)=g(x)解的个数,并判断其中一个解在区间(0,1)内.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.代数式sin($\frac{π}{2}$+$\frac{π}{3}$)+cos($\frac{π}{2}$-$\frac{π}{6}$)的值为(  )
A.-1B.0C.1D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,点A(-$\frac{1}{2}$,0),B($\frac{3}{2}$,0),锐角α的终边与单位圆O交于点P.
(Ⅰ)用α的三角函数表示点P的坐标;
(Ⅱ)当$\overrightarrow{AP}$•$\overrightarrow{BP}$=-$\frac{1}{4}$时,求α的值;
(Ⅲ)在x轴上是否存在定点M,使得|$\overrightarrow{AP}$|=$\frac{1}{2}$|$\overrightarrow{MP}$|恒成立?若存在,求出点M的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知斜率为1的直线l过椭圆$\frac{y{\;}^{2}}{8}$+$\frac{x{\;}^{2}}{4}$=1的下焦点,交椭圆于A、B两点,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+a3+a5=122.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若△ABC的面积为$2\sqrt{3}$,$B=\frac{π}{3}$,则$\overrightarrow{AB}•\overrightarrow{BC}$=(  )
A.4B.-4C.2D.-2

查看答案和解析>>

同步练习册答案