精英家教网 > 高中数学 > 题目详情
20.已知点N(2,0),以N为圆心的圆与直线l1:y=x和l2:y=-x都相切.
(1)求圆N的方程;
(2)设l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1),试判断直线l与圆N的位置关系,并说明理由.

分析 (1)利用圆N与直线l1:y=x相切,求出圆的半径,即可求圆N的方程;
(2)设A(a,a),B(b,-b),利用AB中点为E(4,1),求出A的坐标,可得直线AB的方程,利用圆心N(2,0)到直线的距离d<r,即可得出结论.

解答 解:(1)∵圆N与直线l1:y=x相切,∴半径r=$\frac{2}{\sqrt{2}}$=$\sqrt{2}$.       
∴圆N的方程为(x-2)2+y2=2.                   
(2)显然l斜率存在,设A(a,a),B(b,-b),
∵AB中点为E(4,1),
∴$\left\{\begin{array}{l}{a+b=8}\\{a-b=2}\end{array}\right.$,
∴a=5,b=3,
∴A(5,5),
∴直线AB的方程为y-5=$\frac{5-1}{5-4}$(x-5),即4x-y-15=0,
圆心N(2,0)到直线的距离d=$\frac{|8-15|}{\sqrt{17}}$<2,
∴判断直线l与圆N相交.

点评 本题考查直线和圆的方程的应用,考查圆的方程,考查学生的计算能力,求出A,B的坐标是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.“|x-2|>3”是“x>5”的(  )
A.必要而不充分条件B.充分而不必要条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.观察以下各式:①cos$\frac{π}{3}$=$\frac{1}{2}$;②cos$\frac{π}{5}$cos$\frac{2π}{5}$=$\frac{1}{4}$;③cos$\frac{π}{7}$cos$\frac{2π}{7}$cos$\frac{3π}{7}$=$\frac{1}{8}$;④cos$\frac{π}{9}$cos$\frac{2π}{9}$cos$\frac{3π}{9}$cos$\frac{4π}{9}$=$\frac{1}{16}$;分析上述各式的特征,写出能反映一般规律的等式,并对一般规律的等式给予证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.正态总体N(0,1)中,数值落在(-∞,-3)∪(3,+∞)内的概率是(  )
A.4.6%B.0.002C.0.003D.3%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知A,B两个批发市场,商品的批发价相同,但是某地区的居民从两地运回商品时,每单位距离的运费不同,A地的运费是B地的两倍,已知A,B相距100公里,问:A,B两地批发市场售货区域分界线设在何处对居民进货有利?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在由12道选择题和4道填空题组成的考题中,如果不放回地依次抽取2道题,求:
(1)第一次抽到填空题的概率;
(2)第一次和第二次都抽到填空题的概率;
(3)在第一次抽到填空题的前提下,第二次抽到填空题的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正实数x,y,z满足xy+3yz=20,则2x2+5y2+2z2的最小值为40.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x-$\frac{1}{x}$)=x2+$\frac{1}{{x}^{2}}$,(1)求f(3);(2)求f(x)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)是二次函数,不等式f(x)<0的解集是(0,1),且f(x)在区间[-1,4]的最大值是12.
(1)求f(x)的解析式;
(2)设函数h(x)=lnx-2x+f(x),若函数h(x)在区间[$\frac{1}{2}$,m-1]上单调函数,求实数m的取值范围.

查看答案和解析>>

同步练习册答案