精英家教网 > 高中数学 > 题目详情
在四棱柱中,底面,底面为菱形,交点,已知,.

(1)求证:平面
(2)求证:∥平面
(3)设点内(含边界),且,说明满足条件的点的轨迹,并求的最小值.
(1)详见解析;(2)详见解析;(3)点在线段上,的最小值

试题分析:(1)求证:平面,证明线面垂直,即证线线垂直,即在平面找两条相交直线与垂直,由于底面为菱形,则,又底面,得底面,即,从而得证;(2)求证:∥平面,证明线面平行,首先证明线线平行,可用三角形的中位线平行,也可用平行四边形的对边平行,注意到的中点,连接,交于点,连接,证得四边形是平行四边形,从而得,从而可证∥平面.;(3)连接,则,又在中,,又中点,所以,得平面,由已知可知,,由,得,故点一定在线段上,这样就得到点的轨迹,进而可得的最小值.
试题解析:(1)依题意, 因为四棱柱中,底面
所以底面.
底面,所以.
因为为菱形,所以.而,所以平面.       4分
(2)连接,交于点,连接.依题意,,且,
所以为矩形.所以.又,,,
所以=,所以为平行四边形,则.
平面平面,
所以∥平面.                                         9分

(3)在内,满足的点的轨迹是线段,包括端点.
分析如下:连接,则.
由于,故欲使,只需,从而需.
又在中,,又中点,所以.
点一定在线段上.当时,取最小值.
在直角三角形中,,,,
所以.                                14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在三棱柱中,侧面为菱形,且的中点.

(1)求证:平面平面
(2)求证:∥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在四棱锥中,底面是矩形,且平面分别是线段的中点.

(1)证明:
(2)判断并说明上是否存在点,使得∥平面

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在三棱锥中,已知, 一绳子从A点绕三棱锥侧面一圈回到点A的距离中,绳子最短距离是_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n是两条不同的直线,是两个不同的平面,则
A.若m//,n//,则m//nB.若m//,m//,则//
C.若m//n,m,则nD.若m//,则m

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是平面内的两条不同直线,l是平面外的一条直线,则的(     )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体中,下列几种说法错误的是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

表示不同直线,M表示平面,给出四个命题:①若∥M,∥M,则 或相交或异面;②若M,,则∥M;③,则;④ ⊥M,⊥M,则。其中正确命题为
A.①②B.②③C.③④D.①④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知l,m是两条不同的直线,α、β是两个不同的平面,有下列四个命题:
①若lβ,且α⊥β,则l⊥α;
②若l⊥β,且α∥β,则l⊥α;
③若l⊥β,且α⊥β,则l∥α;
④若α∩β=m,且l∥m,则l∥α.
则所有正确的命题是________.(填序号)

查看答案和解析>>

同步练习册答案