精英家教网 > 高中数学 > 题目详情

【题目】观察下列方程,并回答问题:

;②;③;④;…

(1)请你根据这列方程的特点写出第个方程;

(2)直接写出第2009个方程的根;

(3)说出这列方程的根的一个共同特点.

【答案】(1)(2)1,-2009.(3)方程的根共有两个,一个是1,一个是.

【解析】试题分析:(1)根据方程特点:二次项系数为1,一次项系数及常数项依次成等差数列,即第个方程为: .(2)由方程因式分解得第2009个方程的根为:1,-2009. (3) 这列方程的根一个是1,一个是.

试题解析:(1)由已知方程:

归纳可得,第个方程为: .

第2009个方程为:

此方程可化为:

故第2009个方程的根为:1,-2009.

(3)这列方程的根共有两个,一个是1,一个是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)

(1) 判别函数f(x)的奇偶性;

(2) 判断函数f(x)的单调性并根据函数单调性的定义证明你的判断正确;

(3) 求关于x的不等式f(1x2)f(2x2)0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为上一点.

(1)求椭圆的方程;

(2)设分别关于两坐标轴及坐标原点的对称点,平行于的直线于异于的两点.点关于原点的对称点为.证明:直线轴围成的三角形是等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆上任意一点,点到直线:的距离为,到点的距离为,且,直线与椭圆交于不同两点都在轴上方),且.

(1)求椭圆的方程;

(2)当为椭圆与轴正半轴的交点时,求直线方程;

(3)对于动直线,是否存在一个定点,无论如何变化,直线总经过此定点?若存在,求出该定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(I)求函数上的最小值;

(II)若函数的图象恰有一个公共点,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 其中

(1)若是函数的极值点,求实数的值及的单调区间;

(2)若对任意的 使得恒成立,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了对某课题进行研究,用分层抽样方法从三所高校的相关人员中,抽取若干人组成研究小组、有关数据见下表(单位:人)

(1)求

(2)若从高校抽取的人中选2人作专题发言,求这二人都来自高校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1时,求函数的单调区间;

2时,若对任意恒成立,求实数的取值范围;

3设函数的图象在两点处的切线分别为,若,且,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,太湖一个角形湖湾 常数为锐角. 拟用长度为为常数的围网围成一个养殖区,有以下两种方案可供选择:

方案一 如图1,围成扇形养殖区,其中

方案二 如图2,围成三角形养殖区,其中

1求方案一中养殖区的面积

2求方案二中养殖区的最大面积

3为使养殖区的面积最大,应选择何种方案?并说明理由.

查看答案和解析>>

同步练习册答案