【题目】已知函数,.
(1)讨论函数与函数的零点情况;
(2)若,对任意恒成立,求实数的取值范围.
注:.
【答案】(1)当时,不存在零点;当时,有一个零点为,当时, 不存在零点,当时,不存在零点,当且时,有一个零点为;(2).
【解析】试题分析:(1)根据对数函数的单调性与值域可得当时,不存在零点;当时, 函数有且仅有一个零点,根据幂函数的性质可得当时, 不存在零点,当时,不存在零点,当且时,有一个零点;(2)当,函数在区间上单调递增.又,符合题意;当时,存在,使,不合题意,综合两种情况可得结果.
试题解析:(1)函数,
当时,不存在零点;当时,
所以函数有且仅有一个零点为.
函数.
当时,不存在零点;
当时,,且函数的定义域是,此时函数不存在零点;
当且时,令,得,得,此时函数有且仅有一个零点为.
(2)若,则,.
令,得,则函数的定义域是;
令,得,则函数的定义域是.
因为对任意恒成立,
所以对任意恒成立.
令,则对任意恒成立.
.
讨论:当,即时,且不恒为0,
所以函数在区间上单调递增.
又,
所以对任意恒成立.故符合题意;
当时,令,得.
令,得,
所以函数在区间上单调递减,在区间上单调递增,
所以.又,所以当时,存在,使.
故知对任意不恒成立.故不符合题意.
综上,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由扇形挖去扇形后构成的).已知,线段与弧、弧的长度之和为米,圆心角为弧度.
(1)求关于的函数解析式;
(2)记铭牌的截面面积为,试问取何值时,的值最大?并求出最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】唐三彩,中国古代陶瓷烧制工艺的珍品,它吸取了中国国画、雕塑等工艺美术的特点,在中国文化中占有重要的历史地位,在中国的陶瓷史上留下了浓墨重彩的一笔.唐三彩的生产至今已有1300多年的历史,对唐三彩的复制和仿制工艺,至今也有百余年的历史,某陶瓷厂在生产过程中,对仿制100件工艺品测得其重量(单位:) 数据,将数据分组如下表:
(1)统计方法中,同一组数据常用该组区间的中点值(例如区间的中点值是2.25)作为代表.据此,估计这100个数据的平均值;
(2)根据样本数据,以频率作为槪率,若该陶瓷厂生产这样的工艺品5000件,试估计重量落在中的件数;
(3)从第一组和第六组6件工艺品中随机抽取2个工艺品,求一个来自第一组,一个来自第六组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,过的直线与椭圆交于两点,的周长为.
(1)求椭圆的方程;
(2)如图,点,分别是椭圆的左顶点、左焦点,直线与椭圆交于不同的两点、(、都在轴上方).且.证明:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设是异面直线,则以下四个命题:①存在分别经过直线和的两个互相垂直的平面;②存在分别经过直线和的两个平行平面;③经过直线有且只有一个平面垂直于直线;④经过直线有且只有一个平面平行于直线,其中正确的个数有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】中小学生的视力状况受到社会的广泛关注,某市有关部门从全市6万名高一学生中随机抽取了400名,对他们的视力状况进行一次调查统计,将所得到的有关数据绘制成频率分布直方图,如图所示.从左至右五个小组的频率之比依次是.
(1)抽取的400名学生中视力在范围内的学生约有多少人?
(2)如果视力达到5.0以上算正常,用样本估计总体,求全市高一学生中视力正常的学生有多少人?
(3)从第4组和第5组的学生中按分层抽样的方式抽取样本容量为8人的样本,再从样本中随机抽取2人进行问卷调查,请求出2人来自同一组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,分别是椭圆的左、右顶点(如图所示),点在椭圆的长轴上运动,且.设圆是以点为圆心,为半径的圆.
(1)若,圆和椭圆在第一象限的交点坐标为,求椭圆的方程;
(2)若椭圆的离心率为,过点作互相垂直的两条直线,交椭圆于P,Q两点,若直线PQ过点M,求m的值(用含的代数式表示);
(3)当圆与椭圆有且仅有点一个交点时,求的运动范围(用含的代数式表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com