精英家教网 > 高中数学 > 题目详情

【题目】已知F1 , F2为椭圆 的左、右焦点,F2在以 为圆心,1为半径的圆C2上,且|QF1|+|QF2|=2a.

(1)求椭圆C1的方程;
(2)过点P(0,1)的直线l1交椭圆C1于A,B两点,过P与l1垂直的直线l2交圆C2于C,D两点,M为线段CD中点,求△MAB面积的取值范围.

【答案】
(1)解:圆C2的方程为

此圆与x轴相切,切点为

,即a2﹣b2=2,且

又|QF1|+|QF2|=3+1=2a

∴a=2,b2=a2﹣c2=2

∴椭圆C1的方程为


(2)解:当l1平行x轴的时候,l2与圆C2无公共点,从而△MAB不存在;

设l1:x=t(y﹣1),则l2:tx+y﹣1=0.

,消去x得(t2+2)y2﹣2t2y+t2﹣4=0,

又圆心 到l2的距离 ,得t2<1.

又MP⊥AB,QM⊥CD

∴M到AB的距离即Q到AB的距离,设为d2

∴△MAB面积

∴△MAB面积的取值范围为


【解析】(1)圆C2的方程为 ,由此圆与x轴相切,求出a,b的值,由此能求出椭圆C1的方程.(2)设l1:x=t(y﹣1),则l2:tx+y﹣1=0,与椭圆联立,得(t2+2)y2﹣2t2y+t2﹣4=0,由此利用弦长公式、点到直线距离公式,结合已知条件能求出△MAB面积的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:

作物产量(kg)

300

500

概率

0.5

0.5

作物市场价格(元/kg)

6

10

概率

0.4

0.6


(1)设X表示在这块地上种植1季此作物的利润,求X的分布列;
(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}是首项为15的等比数列,其前n项的和为Sn , 若S3 , S5 , S4成等差数列,则公比q= , 当{an}的前n项的积达到最大时n的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,四边形ABCD为梯形,AD∥BC,AB⊥平面BEC,EC⊥CB,已知BC=2AD=2AB=2.

(1)证明:BD⊥平面DEC;
(2)若二面角A﹣ED﹣B的大小为30°,求EC的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于定义在R上的函数f(x),如果存在实数a,使得f(a+x)f(a﹣x)=1对任意实数x∈R恒成立,则称f(x)为关于a的“倒函数”.已知定义在R上的函数f(x)是关于0和1的“倒函数”,且当x∈[0,1]时,f(x)的取值范围为[1,2],则当x∈[1,2]时,f(x)的取值范围为 , 当x∈[﹣2016,2016]时,f(x)的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在ABC中,角A,B,C所对的边分别为a,b,c,且a2+b2﹣c2= ab.
(1)求cos 的值;
(2)若c=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,关于x的方程f2(x)﹣2af(x)+a﹣1=0(a∈R)有四个相异的实数根,则a的取值范围是(
A.(﹣1,
B.(1,+∞)
C.( ,2)
D.( ,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PB=PD=2,
(Ⅰ)求证:BD⊥PC;
(Ⅱ)若E是PA的中点,求二面角A﹣EC﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来共享单车在我国主要城市发展迅速.目前市场上有多种类型的共享单车,有关部门对其中三种共享单车方式(M方式、Y方式、F方式)进行统计(统计对象年龄在15~55岁),相关数据如表1,表2所示. 三种共享单车方式人群年龄比例(表1)

方式
年龄分组

M
方式

Y
方式

F
方式

[15,25)

25%

20%

35%

[25,35)

50%

55%

25%

[35,45)

20%

20%

20%

[45,55]

5%

a%

20%

不同性别选择共享单车种类情况统计(表2)

性别
使用单车
种类数(种)

1

20%

50%

2

35%

40%

3

45%

10%

(Ⅰ)根据表1估算出使用Y共享单车方式人群的平均年龄;
(Ⅱ)若从统计对象中随机选取男女各一人,试估计男性使用共享单车种类数大于女性使用共享单车种类数的概率;
(Ⅲ)现有一个年龄在25~35岁之间的共享单车用户,那么他使用Y方式出行的概率最大,使用F方式出行的概率最小,试问此结论是否正确?(只需写出结论)

查看答案和解析>>

同步练习册答案