精英家教网 > 高中数学 > 题目详情
10.已知向量$\overrightarrow{a}$=(2sinx,cosx),$\overrightarrow{b}$=($\sqrt{3}$cosx,2cosx),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+m的最大值为2
(1)求实数m的值;
(2)求f(x)的递减区间.

分析 (1)利用平面向量数量积的运算及三角函数恒等变换可求函数解析式f(x)=2sin(2x+$\frac{π}{6}$)+m+1,利用正弦函数的有界性即可得解.
(2)根据正弦函数的图象和性质即可求得f(x)的递减区间.

解答 解:(1)∵f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+m=2$\sqrt{3}$sinxcosx+2cos2x+m=$\sqrt{3}$sin2x+cos2x+1+m=2sin(2x+$\frac{π}{6}$)+m+1,
∴由题意可得:2=2+m+1,解得:m=-1.
(2)∵由(1)可得:f(x)=2sin(2x+$\frac{π}{6}$),
∴由2kπ+$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ$+\frac{3π}{2}$,k∈Z可解得f(x)的递减区间为:[kπ$+\frac{π}{6}$,k$π+\frac{2π}{3}$],k∈Z.

点评 本题考查了三角函数的单调性、数量积运算性质,考查了正弦函数的图象和性质,三角函数恒等变换的应用,考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知两点A(-2,-3),B(3,0),过P(-1,2)的直线l与线段AB始终有公共点,则直线l的斜率k的取值范围是$(-∞,-\frac{1}{2}]∪[5,+∞)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.圆台的上、下底面面积分别为4和16,中截面把圆台分成两部分,则这两部分的体积之比为(  )
A.37:8B.8:27C.27:64D.19:37

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,余弦定理表达正确的是(  )
A.a2=b2+c2+2accosAB.b2=a2+c2-2accosB
C.c2=a2+b2-2absinCD.以上结果都不正确

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设集合A为函数y=ln(-x2-2x+8)的定义域,集合B为函数y=x+$\frac{1}{x}$-1的值域.集合C为不等式(ax-$\frac{1}{a}$)(x+4)≤0的解集.
(1)求A∩B;
(2)若C⊆CRA,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,sinx),$\overrightarrow{c}$=(-1,0).
(1)求函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$的周期和单调减区间;
(2)若x∈[-$\frac{3π}{8}$,$\frac{π}{4}$],函数f(x)=λ$\overrightarrow{a}$•$\overrightarrow{b}$的最大值为$\frac{1}{2}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在命题“m>0,n>0,若椭圆mx2+ny2=1的焦点在x轴上,则m>n”的逆命题、否命题、逆否命题中,真命题个数是(  )
A.0B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,已知|AB|=4$\sqrt{2}$,A(-2$\sqrt{2}$,0),B(2$\sqrt{2}$,0),且三内角A,B,C满足sinB-sinA=$\frac{1}{2}$sinC,求顶点C的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.某几何体的三视图如图所示.则该几何体的体积为200.

查看答案和解析>>

同步练习册答案