精英家教网 > 高中数学 > 题目详情
12.若定义运算a⊕b=$\left\{\begin{array}{l}{a,a<b}\\{b,a≥b}\end{array}\right.$,则函数f(x)=6x⊕6-x的值域是(0,1].

分析 根据题意将函数f(x)=6x⊕6-x解析式写出即可得到答案.

解答 解:当x>0时;f(6x⊕6-x)=6-x∈(0,1);
当x=0时,f(6x⊕6-x)=60=1,
当x<0时,f(6x⊕6-x)=6x∈(0,1).
综上所述函数f(x)=6x⊕6-x的值域是(0,1].
故答案为:(0,1].

点评 本题主要考查指数函数的图象,函数图象是研究函数性质的基础要引起重视,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图所示,已知圆的面积为3140平方厘米,求内接正方形ABCD的面积(π取3.14).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知tanα=3,求下列各式的值:
(1)$\frac{4sin(α-2π)-cos(4π+α)}{3sin(α-2π)-5cos(α-6π)}$.
(2)$\frac{si{n}^{2}α-2sinαcosα-co{s}^{2}α}{4co{s}^{2}α-3si{n}^{2}α}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.集合M={(x.y)|x2+y2-6x+8y-39=0},N{(x,y)|x2+y2=r2},若M∩N=∅,则正数r的取值范围是(  )
A.0<r≤5B.0<r<5C.r>13D.r>13或0<r<3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列条件,能使sinα+cossα>1成立的是(  )
A.0<α<πB.0<α<$\frac{3π}{2}$C.0<α<$\frac{π}{2}$D.$\frac{π}{4}$≤α≤$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数y=f(x)的最小值为3,且f(-1)=f(3)=11.
(1)求函数f(x)的解析式.
(2)若函数g(x)=ex-f(x)(其中e=2.71828…),那么g(x)在区间(1,2)上是否存在零点?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设a为实参数,试讨论y=asin2x+2cosx-a-2的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知映射f:A→B,其中A=B=R,对应法则f:x→y=($\frac{1}{3}$)x2+2x,对于实数m∈B在集合A中存在元素与之对应,则m的取值范围是(  )
A.m≤3B.m≥3C.m>3D.0<m≤3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是(-∞,-1)∪(0,1).

查看答案和解析>>

同步练习册答案