精英家教网 > 高中数学 > 题目详情

【题目】如图在三棱柱ABC-平面ABCDEFG分别为AC的中点AB=BC=AC==2.

求证AC平面BEF

求二面角B-CD-C1的余弦值

证明直线FG与平面BCD相交

【答案】(1)证明见解析

(2) B-CD-C1的余弦值为

(3)证明过程见解析

【解析】分析:(1)由等腰三角形性质得,由线面垂直性质得,由三棱柱性质可得,因此,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系E-ABF,设立各点坐标,利用方程组解得平面BCD一个法向量,根据向量数量积求得两法向量夹角,再根据二面角与法向量夹角相等或互补关系求结果,(3)根据平面BCD一个法向量与直线FG方向向量数量积不为零,可得结论.

详解:解:(在三棱柱ABC-A1B1C1中,

CC1⊥平面ABC

∴四边形A1ACC1为矩形.

EF分别为ACA1C1的中点,

ACEF

AB=BC

ACBE

AC⊥平面BEF

(Ⅱ)由(I)知ACEFACBEEFCC1

CC1⊥平面ABC,∴EF⊥平面ABC

BE平面ABC,∴EFBE

如图建立空间直角坐称系E-xyz

由题意得B(0,2,0),C-1,0,0),D(1,0,1),F(0,0,2),G(0,2,1).

设平面BCD的法向量为

,∴

a=2,则b=-1,c=-4,

∴平面BCD的法向量

又∵平面CDC1的法向量为

由图可得二面角B-CD-C1为钝角,所以二面角B-CD-C1的余弦值为

Ⅲ)平面BCD的法向量为G(0,2,1),F(0,0,2),

,∴,∴不垂直

GF与平面BCD不平行且不在平面BCD内,∴GF与平面BCD相交.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线Cy2=2px过点P(1,1).过点(0, )作直线l与抛物线C交于不同的两点MN,过点Mx轴的垂线分别与直线OPON交于点AB,其中O为原点.

(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;

(Ⅱ)求证:A为线段BM的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司需要对所生产的三种产品进行检测,三种产品数量(单位:件)如下表所示:

产品

A

B

C

数量(件)

180

270

90

采用分层抽样的方法从以上产品中共抽取6.

1)求分别抽取三种产品的件数;

2)将抽取的6件产品按种类编号,分别记为现从这6件产品中随机抽取2.

(ⅰ)用所给编号列出所有可能的结果;

(ⅱ)求这两件产品来自不同种类的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·郴州期末]已知三棱锥中,垂直平分,垂足为是面积为的等边三角形,平面,垂足为为线段的中点.

(1)证明:平面

(2)求与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】AB为过抛物线焦点F的弦,P为AB中点,A、B、P在准线l上射影分别为M、N、Q,则下列命题: 以AB为直径作圆,则此圆与准线l相交;、O、N三点共线为原点,正确的是______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点AB且直线PAy轴于M直线PBy轴于N

求直线l的斜率的取值范围

O为原点求证为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知曲线的参数方程为 为参数).以坐标原点为极点, 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.

(1)当时,求曲线上的点到直线的距离的最大值;

(2)若曲线上的所有点都在直线的下方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点P到定点的距离比它到直线的距离小2,设动点P的轨迹为曲线C

求曲线C的方程;

若直线与曲线C和圆从左至右的交点依次为ABCD的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品的保鲜时间y(单位:小时)与储存温度x(单位:)满足函数关系 km为常数).若该食品在0的保鲜时间是64小时,在18的保鲜时间是16小时,则该食品在36的保鲜时间是(

A.4小时B.8小时C.16小时D.32小时

查看答案和解析>>

同步练习册答案