精英家教网 > 高中数学 > 题目详情

【题目】已知幂函数满足

1)求函数的解析式;

2)若函数,是否存在实数使得的最小值为0?若存在,求出的值;若不存在,说明理由;

3)若函数,是否存在实数,使函数上的值域为?若存在,求出实数的取值范围;若不存在,说明理由.

【答案】1;(2)存在使得的最小值为0;(3

【解析】试题分析:1为幂函数可得,解得,经验证2,则,设,则将问题转化为函数上的最小值是否为0的问题。根据对称轴与区间的关系求解,可得满足题意。3由题意得,且在定义域内为单调递减函数,若存在实数a,b满足题意,则可得,由②-①消去n得,从而,将③代入②得,再令,由,所以将问题转化为求

上的取值范围,根据二次函数的知识可得

试题解析

(1)∵是幂函数,

解得

时, ,不满足

时, ,满足

(2)令,则

①当,即时,由题意得

解得

②当,即时,由题意得

解得(舍去);

③当,即时,由题意得

解得(舍去)

综上存在使得的最小值为0。

(3)由题意得

在定义域内为单调递减函数;

若存在实数,使函数上的值域为

由②-①,得

将③代入②得,

,故在区间上单调递减,

∴存在实数,使函数上的值域为且实数的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知fxsin2x).

1)求函数fx)的最小正周期;

2)求函数fx)的最大值,并写出取最大值时自变量x的集合;

3)求函数fx)在x[0]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于x的不等式组的解集为A,若集合A中有且仅有一个整数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.小华同学利用刘徽的“割圆术”思想在半径为1的圆内作正边形求其面积,如图是其设计的一个程序框图,则框图中应填入、输出的值分别为( )

(参考数据:

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的

A

B

C

D

E

F

这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A、F这两块实验田上,则不同的种植方法有 ( )

A. 360种 B. 432种 C. 456种 D. 480种

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M的方程为x2+y2-2x-2y-6=0,以坐标原点O为圆心的圆O与圆M相切.

1)求圆O的方程;

2)圆Ox轴交于EF两点,圆O内的动点D使得DEDODF成等比数列,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费的标准是:重量不超过的包裹收费10元;重量超过的包裹,在收费10元的基础上,每超过(不足,按计算)需再收5.

该公司将最近承揽的100件包裹的重量统计如下:

公司对近60天,每天揽件数量统计如下表:

以上数据已做近似处理,并将频率视为概率.

(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;

(2)①估计该公司对每件包裹收取的快递费的平均值;

②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,其余的用作其他费用.目前前台有工作人员3人,每人每天揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是决策者,是否裁减工作人员1人?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】汽车急刹车的停车距离与诸多因素有关,其中最为关键的两个因素是驾驶员的反应时间和汽车行驶的速度.d表示停车距离,表示反应距离,表示制动距离,.下图是根据美国公路局公布的试验数据制作的停车距离示意图,对应的汽车行驶的速度与停车距离的表格如下图所示

序号

1)根据表格中的数据,建立停车距离与汽车速度的函数模型.可选择模型一:或模型二:(其中v为汽车速度,a,b为待定系数)进行拟合,请根据序号2和序号7两组数据分别求出两个函数模型的解析式;

2)通过计算时的停车距离,分析选择哪一个函数模型的拟合效果更好.

(参考数据:;;.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)一位网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的五种商品有购买意向.已知该网民购买两种商品的概率均为,购买两种商品的概率均为,购买种商品的概率为.假设该网民是否购买这五种商品相互独立.

1)求该网民至少购买4种商品的概率;

2)用随机变量表示该网民购买商品的种数,求的概率分布和数学期望.

查看答案和解析>>

同步练习册答案